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ABSTRACT

An observability problem for both deterministic and stochastic

System is studied here. Ii
Deterministic observability is a determination of whether every

state of the system is connected to the observation mechanism and how

it is connected, if connected. On the other hand, stochastic

observability discusses the "tightness" of the connection in terms of

the chosen statistical sense.

For the deterministic system observability two conditions, '-"

connectedness and univalence, are obtained from modification of the

global implicit-function theorem. Depending on how the conditions are

satisfied observability is classified in three categories;

observability in the strict sense, observability in the wide sense and

the unobservable case.

Two underwater tracking examples, the bearing-only-target (BOT)

problem described in the mixed-coordinate system, and an array SONAR

problem described in terms of a small number of sensors and various

measurement policies are analyzed.

For the stochastic system observability, an information theoretic

approach is introduced. The Shannon concepts of information are

considered instead of Fisher information. Computed here is the mutual

information between the state and the observation. Since this

quantity is expressed as an entropy difference between a priori and a

posteriori processes, two densities are required for computation. Due

.............................. . .*.
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to the difficulty in solving the density equation, the second moment

approximation of the densities are considered here. Then, the mutual

information is used as a criterion to determine the "degree of

observability."

Information sensitivity with respect to various coordinate L .

systems, including rectangular, modified polar and mixed coordinates

are analyzed for the BOT system. In an array SONAR, a ccmbination of

relative delay and Doppler measurements for up to three sensors are

ccmpared.
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COBSERVABILITY AND INFO TION STRUCTURE

OF NONLINEAR SYSTE

CHAPTER 1: INTRDUCTION

A state space description is one my widely used to describe a

physical dynamic system in a mathemtical model. Here every

-xnividual state represents s property of the actual system

characteristics. So, to understand the nature of the system fr.,

outside the dynamic model, one is required to observe or measure

necessary states. But, sometimes, it is not possible to access and

measure all of the necessary states from the outside. Even in case of

such possibility, it may be too expensive econaically to measure

specific states. In this csone thinks about another indirect way

instead of direct measuring at high cost or urmueasurable states, i.e.,

if one can somehow reconstruct every necessary state by utilization of

less expensive or measurable states only, then one might be satisfied.

Obeervability is a basic system study relevant to this subject. One

is interested, here, in determination of whether measured data is

enough to reconstruct all of the states. Importance of system

observability stems from another aspect. I.e., if the system is not

observable for same reason, then certain states which are estimated

from this insufficient information may be inaccurate and thus any

further action, for exwmle, feedback control which is evaluated based

on inaccurate states may exhibit undesirable performance.

2.:.
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If noise is involved in the description of system and/or

measurement dynamics then the observability concept is changed from

the above deterministic case. Here, one is more interested in "how

much" the system is observable in terms of a chosen probabilistic

sense, i.e., degree of observability rather than a "yes" or "no" type

answer. Of course, there are many different ways to measure the

degree of observability. Apparently, one way is using information

theory. Here, evaluated is the quantity of common information, so

called, mutual information between the state x and the observation
t

yt' and this quantity is used as a criterion to determine the degree

of observability, i.e., a calculation is made of the amount of

information about state xt which is contained in the observation yt,-

In Chapter Two, deterministic observability is studied. After --.

defining the problem, observability criteria for linear systems and

former results for nonlinear systems are summarized. Since, nonlinear

observability is a geometric functional structure problem, a

functional analytic approach is used. A modified version of the

global implicit function theorem is obtained from the result of Palais

[1]. To apply the modified version of this theorem in the nonlinear

observability problem, appropriate algebraic modification of the

observation equation is required. Thus two conditions, connectedness , X

and univalence, are derived. Depending on how the conditions are

satisfied, observability is classified in three categories;

observability in the strict sense, observability in the wide sense and

the unobservable case. Two important applicational examples are -

1,:.X-

. .. . .. . . . . . . . ..
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analyzed using the result. I.e., BOT tracking which is described in

the mixed-coordinate system, and an array SONAR with a small number of

sensors and with various measurement policies are analyzed.

In Chapter Three, stochastic-system observability is studied

using an information-theoretical approach. The term "information" is

interpreted in the Shannon sense rather than the Fisher sense here.

So, information is not an abstract quantity but a substantial quantity

having appropriate units. With the basic definitions of information

and entropy concepts, mutual information is introduced and expressed

in terms of entropy difference, i.e., difference between unconditional

and conditional entropies. Since the evaluation of the mutual

information of stochastic processes requires more conditions than

simple random variables that is introduced using measure theoxy.I. Under the proper conditions, entropy is expressed in terms of

estimation covariances. Therefore, the mutual information can be

obtained from two covariances - unconditional and conditional

covariances. Both can be obtained from an adopted filter algorithm.

But the non-Gaussian case generally requires knowledge of the

probability distribution or higher order moments. Here the second

moment approximations of the densities are considered.

A brief discussion on the relationship between deterministic and

stochastic observability follows. A result on the relationship L

between the Fisher information and Shannon's mutual information is

discussed.

p - .' -'
.:.-.:.-.
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Chapter Four shows simulation results of various practical

problems in view of observability and information structure. Followed

by a simple linear-system example is BOT tracking and array SONAR

problems which are analyzed in Chapter two.

Information structures of observable and unobservable cases for

all examples are compared with various parameter changes. Estimation

error analysis in terms of the contents of information is shown.

Chapter Five summarizes the results.

....................
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Notation

The following notations will be used throughout:

FP Euclidean n-dimensional space

II II Euclidean norm

trA Trace of a matrix A

A* Conjugate transpose of matrix or vector A

(A- will be used when A is real)

A(n)Ct) n-th time derivative of ACt)

Gradient vector of nonanticipative functionals L
ax

2

T a Jacobian matrix of nonanticipative functionals

<< Absolute continuity or negligibly small

Equivalence or approximated quantity

Complete measure space

(Q,F,p) Complete probability space

Ft Sub -0- algebra of F

Absolute value

x(t) Denotes do< -
dt

x(t) Deterministic time variable of vector x.

" (t) Scalar quantity of x(t)

Stochastic time variable of vector x for a particular

elementary event k e -

[ . ,'. -
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Notation (cont.)

XScal~ar quantity of x.
t'% .-

(xt Stochastic vector process

E[xt] Epectation ofx t7
E[Xtlyt] Conditional expectation with respect to a given measurement

Yt

E:[xtIFYJ Conditional expection with respect to a given sub-a - algebra

generated by (y s O<s<t)

C Space of continuous functions

[a,b] Closed interval

(a,b) Open interval

a EA a is anelement of A

P Covariance matrix

p Probability distribution (probability density function when .

not confused with distribution)

p Probability density function

** End of proof

fI £u is restricted by U
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CHAPTER 2: OBSERVABILITY OF DETIERMNISTIC NONLINEAR SYSTEMS

2-1 The observability problem and former results.

Consider a mathematical description of physical dynamic system

which is expressed in the first-order vector differential equation

dx(t)
-- - - f(x(t),u(t),t), (2-1)

dt

where x(t) is an n-dimensional state vector, u(t) is an r-dimensional

control input, and t is the time variable. Assume the dynamic

property of the system is known, i.e., an n-vector valued function

f(.) and u(t) is known for t>t0 . Further assume that f(.)

satisfies the existence and uniquness conditions of the x(t), i.e.,

1. f(.) is continuous in t and once continuously differentiable in x

andufor fixedt, t:FO,).

2. f(.) satisfies uniform Lipschitz condition on x.

1 2 1 2"" If(x (t),.)-f(x2(t),.)11 < M 11 X (t) -x2(t ill, (2-2)"- "

where I I is the Euclidean norm, M is a bounded real positive

constant. Under the above conditions one wants to know the time

trajectory of x(t) from (2-1). For this purpose one constructs an

integral operator g(.) such that

x(t)=g(x(t ),u(t),t). (2-3)
0

. . ~~ ... .. ... ..
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But knowing the operator g(.) does not mean that, actually, one can

get the solution trajectory x(t) of (2-1) because the initial state

X(t ) in (2-3) is not known. So, if one can somehow establish x(t ),

then the problem will be solved. To establish the initial state

xto, in practice, one might construct another equation known as a

"measurement" or "observation" equation since there is no way to know

x(t o ) from the system model equation (2-1) in itself. Using

appropriate measuring or observing devices, necessary state variables

or other variables are observed for some period of time, say [to't .

Then using the observed data, x(to) might be determined indirectly.

This obervation mechanism might be modelled mathematically as

y(t) = h(x(t),t), (2-4)

where h(.) is an m-dimensional vector function and yE Rm . Here m is

not necessarily the same as n. Usually from the physical availability

anI economic point of view, m is less than n.

If (2-4) is uniquely solvable for x(t), then every state x.(t),

i=1,2, ... ,n can be computed with only currently measured y(t), i.e.,

the information measured is in a sense complete. But if observed

information is incomplete, i.e., (2-4) is not uniquely solvable for

x(t), then there arises the problem of evaluating the state x(t) by

some indirect method using state equation (2-1) as well as observation

equation (2-4).

The observability problem has been well investigated and the

result is clear for the linear system where the test of nonsingularity

S . . .. .". -. . . .o.°" ' . .- o . . . . . . ... ° -" -" "- - -- . ". '.- ' ' . . . " . -. ' '°'-o c .'° .
._." '."- ." ". " -.. " ' " '. -" -" .' ' '. .. " " ° ." """" .- ° " .A..'' '' '- ., .. ,-. . . . .

' "
. . . ' - .. ; - -- ' - ' -' , * -, ° -- 2
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of the observability matrix or equivalently rank test Is enough.

But for the general nonlinear system these techniques are not

applicable, unfortunately, since even in case of nonsingular or full

rank condition of the observability matrix, one cannot solve uniquely

x(t) from (2-1) and (2-4). Thus x(to) can not be determined uniquely.

Before investigating this problem further, a summary of the former

results are made.

2.1.1 Former results on system observability

1. Linear system. -V

Consider the time-varying linear system

x(t) = A(t)x(t)+B(t)u(t), (2-5)

y(t) = C(t)x(t)+D(t)u(t), (2-6)

where matrices A(t), B(t), C(t), D(t) are known n x n, n x r, m x n,

m x r, respectively and entries are continuous in t over (- , ).

Observability of the system (2-5), (2-6) is dealt with in the most

standard textbooks [2], [3].

First define the observability of the linear system (2-5), (2-6)

as follows:

Definition [3]

The system (2-5), (2-6) is completely observable at t if for any

X(to), there exists a finite t >t such that the knowledge of u(t) and
0 0o

•0
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y(t), te [to, t1  is sufficient to determine x(t).

From solution of (2-5), y(t) of (2-6) becomes

t
, y(t) = C(t) (tt )X(t )+C(t) fO(t,s)B(s)u(s)ds + D(t)u(t), (2-7)

where 4(.) is the transition matrix of the homogeneous part of (2-5).

From (2-7) observability criterion is derived as [2];

Criterion 1

The system (2-5), (2-6) is observable at t if and only if the

0 H
columns of the m x n matrix function C(t)o(t,t ) are linearly

0

independent on ft ,t I .
01

By multiplying 0*(t,t)C*(t), integrating from to to t and

retaining the zero input response of (2-7), Criterion 2 is obtained.

Criterion 2

The system (2-5), (2-6) is observable at to if and only if the

Grammian matrix N(.)

t
N(t ,t)= fo*(s,t )C*(s)C(s)O(s,t )ds (2-8)

t o

is nonsingular.

Another criterion which is more convenient to apply can be

derived from Criterion 1, i.e.,

tit.....-.. -- -- -- -.. .. .-. .
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F(t) = C(t)¢(t,t o ) ,(2-9)

I

are linearly indepenIdent on [to,t1 ] if the matrix

V (t) = [F*(t)IF(')*(t)I .... IF(n-1)*(t)], (2-10)

has rank n. Thus we have the third criterion. ...a...

Criterion 3

System is observable at t if and only if there exists a t e[to t1 ]0 0

such that observability matrix

Q (t) -

V*(t) = Q(t) (2-11)

0 _ (t)- .

has rank n, where

d

Qk+i (t) = Qk(t)A(t) + -Qk(t), k=0,1,...,n-1, (2-12)

Qo(t) =CMt

For the time-invariant linear case the following observability

conditions are equivalent. The time-invariant linear system is,also,

observable at to in [o, c ) if one of the following conditions is

satisfied,

-'. . *- w " . . "- . - . o. . - -*.. "o •*- . -. . . .- . • ." .- . . . . .Q . a... . . o - a--. " ''. -. * -. . - - J
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1) Th coluns ~ At
1 The columns of ce are linearly tean [0,penenoon"0

2) The columns of CISI-A) are linearly independent. S is Laplace kV

transform parameter.

t eA* (S-to)C*Ce (s-to)c,

3) N(tot) = e s CeA s

to

is ncmingular for any to>o and t>t.

4) The mn x n observability matrix

C

CA

V*= CA2  
(2-13)

CAn- 1

has rank n.

2. Nonlinear system.

As known, the observability property of the general nonlinear

system is not a global property,i.e.,an observable nonlinear system in

one time interval or one portion of state space may be unobservable in

a different interval. In a geometric sense, a functional relation

between measurement space and state space might not be in one-to-one

correspondence such that the inverse function between the two spaces

is not uniquely defined globally even though it is so defined locally.

..... .-.... . . . N * N NN..*N.-.-.-..¢ ..
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Various authors have studied the nonlinear observability problem

in many wys. Extension of the linear system observability criteria

to the nonlinear case is attempted in (4], [5]. The observability

rank condition using Lie algebra [6], [7], [8] and Taylor series

expansion [9] are reviewed. As the observability problem is,

sometimes, called "an inverse problem," the inverse function theorem

in analysis is used widely. In this approach the Jacobian matrix of

the function which is related to the observation equation plays a .-_

central role. [10] - [17] can be viewed in this category.

1) Linearization method

The nonlinear system and observation equations

x(t) = f(x(t),u(t),t), (2-14)

y(t) = h(x(t),t), (2-15)

are linearized around some reference point, for example, the origin or

the equilibrium point or a pr6per operation point to study the

neighborhood property around them. Here, a linearized version of (2-

14), (2-15) is obtained as

6x(t) Fr6x(t) + G u(t), (2-16)

where °. '
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-XI X-X

with x* a certain reference point. Lee and Markus[4] chooses x* to

I be the origin under the null condition

f(0,0,0) =0, (2-18)

h(0,0) = 0, (2-19)

Cand applied the rank test to the system (2-16), (2-17). Hwang and

Seinfejld [5] ext-ended the work of [4] to the arbitrary entire domain

of the initial condition.

2) Observability rank condition

g A geometric approach using Lie Algebra for the continuous [6] or

discrete [7] nonlinear system is studied. Define .*

Ia h
L fi(h(x)) x~~- f(x,u ,) i =1, 2, ,

where f (x) =f(x(t),u. (t),t) and L is closed under Lie algebra

L[flf 2 ](h) L 1f(Lf2(h)) L L2(Lf1(h))

Let g(x) be the set with elements consisting of a finite linear

combination of functions of the form I
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Lf ( ..... (Lfk(h)) ..... k 1, 2, .... mfE

The Lie differential dg(x) is, then a finite linear combination

dg(x) = (d(Lfl( .... (Lfk(h)) ...))},

= (L1(....(Lfk(dhfl.... (2-21)
f

The observability rank condition is satisfied if dg(x) in (2-21) has

rank n.

V.

3) Taylor Series expansion [ 9 ] ".-

The Taylor series expansion of (2-15) about an initial condition

X(t) = x at t is
0 0

y(t) = Y(to)+Y'(to) At + y"-t t2 +

o oA0t 2 M

= y (t( _ _ _ 'y=0y  )i! (2-22)

Define the collection of all the coefficients of (2-22) to be Y such

that

Y =Y [ (t o  i =1,2,... T -

= (Xo0 ) (2-23)

Then one-to-one relation of the function (2-23) is checked. In actual

application y(i) (t) i 1,2,... is checked if it is an even
0 -

function in x
* 0

71 . .°. .
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4) Jacobian matrix approach

Observation equation y(t) is differentiated with appropriate

substitution according to the system equation (2-14) successively.

Then the Jacobian matrix J(.) evaluated at x0 is analyzed as follows;

i) Rank test of determinant J (.) [10]1, [11]

or, equivalently nonzero of det J is tested [17].

ii) Ratio condition [13], [14], (15]

Ratio condition is satisfied if the absolute value of the leading

principle minor of J(.) is greater than e>O, i.e.,

A I = jdetJl I > C

["ij jdetJ2j
= detJ~

detJn
~nJ=dtn e, (2-24)

where J. is obtained by taking only the first i rows and colmns of J.

Singh [14] checked the ratio condition for the matrix, AJ, where, A,

is an arbitrary, n x mk matrix for the k-th derivation of y(t) such

that mk > n.

iii) Positive semidefinite of AJ [13], [14], [16].

Again A is an arbitrary n x mk matrix to make AJ to be n x n

- - - - - . - . -
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matrix. Then the system is said to be observable if one can find

matrix A such that AJ is positive semidefinite.

iv) Minor matrix analysis of J (12].

Minor matrix of J matrix J1, J2 ..... Jn-i is corstructed. Then

for each Ji. an unobservable set D. is obtained as

D. = x J i  0, + 0 }, i = 1, 2, .... n-i. (2-25)

In spite of many results, it is found that some are

insufficient [9] - [11], [13], [14], or too complicated to apply in

practice [12], or applicable for only special class of nonlinear

system such as in [18] or for linearized systems.

Introduced in the subsequent section is a new method which is

simple to apply in practical problems and provides not only the test

of observability of the system, but also, identifies the unobservable

states when the system is unobservable. This approach is based on

Palais' global implicit-function theorem [1] and its late versions -

(19], [20].

Modification of both the non-zero Jacobian condition and finite

covering condition are required to be applied to the system

observability. A modified version of the global implicit-function

theorem is used in section three to demonstrate its simplicity and

effectiveness by providing various examples including tracking of a

maneuvering target where only bearing information is extracted from

the measurement and array SONAR tracking problem with a small rnmber

of sensors.

. . .
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2.2 A modified form of global implicit-function theorem

The most common inverse-function theorem guarantees only the

existence of a local inverse in terms of the nonzero determinant of

the Jacobian of the function f(.). The implicit-function theorem is

an extension of this theorem to include argumented variables in it.

The global versions of these theorems are the global inverse-function

theorem and the global implicit-function theorem, respect.vely. Both

theorems, in a global sense, require nonzero det J(.) and finite-

covering conditions. It is shown here that both conditions can be

modified further to be sufficient conditions for f to be invertible

uniquely. I.e., without losing a global homeomorphic property of f,

one can relax the nonzero Jacobian condition from the n dimensions to

the n-i dimensions for the special structure of f. However,the finite-

covering condition needs to be added to the one-covering condition.

The modified version of the global implicit-function theorem then will

be used to determine the observability of the given nonlinear system.

See Appendix A for the inverse and implicit function theorems and some

related definitions.

Global versions of the local inverse and implicit function

theorems are studied by several authors [25], [26], [27]. Here these

theorems are restated without proof which can be found from cited

references.

h ~ ~ t ~ g - .. *
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Theorem 2-1 Global inverse function theorem

Let f be an n real function of n real variables. The necessary

and sufficient conditions that the function f:Rn - R defined by

f(x)=y, )MxeR"Yee~

be a C1 diffeomorphism of IRn onto itself are

i) each f.(x) is of class C~

ii) det Jf(x)0O,

iii) limI f !~ as ixI- .

Theorem 2-2 Global implicit function theorem

Let f be a n real function of n + r real variables (n>1, r>l).

Consider the function f:Rrx Rr ->Rn such that

f(x,v)=y,

n r n
where x V DER yER and f is C in x and v. Then there exists a

unique C1 function such that

g:RX ->

if

i) det Jf(.) 0 0 for all x and v, where J ~3f/3 x.

ii) lim fI (x,v) co, as x co
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Condition iii) in the Theorem 2-1 or condition ii) in the

Theorem 2-2 is called a "finite-covering" condition (see below).

Next it is shown that both the nonzero-Jacobian and the finite -

covering conditions of both theorems are not enough for f to be one-

to-one correspondence. Appropriate modification is required to

provide sufficient conditions. Before a discussion is presented the

following terms are defined.

Definitions [261, [31]

A cover for a set A is a collection v of sets such that AC VVev

Let X and Y each be connected spaces. If f maps X onto Y with the

property that for each y E Y has an open neighborhood V such that each

component of upiU, U = f-(V) is mapped homeomorphically onto V by f,

then f is called a covering map. In this case if the cardinal number

is n, then f is an n-covering map. If n is finite, then it is a

finite-covering map, and if n=l, then it is a one-coverinq- ..a.

Note that the finite covering condition excludes the possibility

that f oscillates infinitely as j x -> With the above

definitions, next two lemmas show that the hameomorphism of f (at -

least in a local sense) provides sufficiency for f to be a finite-

covering function. But, the converse is not true (See Example 2-1).

. ,.. .- , ,

• ... .... .. . - ,
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Lemma 2-1 [273

Let f :X I->Y, YEsR", YeRn be a local homeomorphism. A necessary

and sufficient condition that f be a finite covering is that

urnim f (x) H =

Ix -

Lemm 2-2 £63

Let f:XJ->Y, XERn, YEFRn If f is a homeororphic function of Rn

onto itself, then

lam IIf (X) H -

Example 2-1

Consider the two-dimensional function f which is given by

f~x2 2 2 2 2

ThenX

f1(x) 2 2

2 2

l f(x)j 2x1 + x 2 y 2  2 +-2 4

1. . . . . . . - -2 1.
.~~~ .X . .>....................
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with non-unique solutions -

y2

x gy

2 .-,:;,:2:1

Thus f is only locally homeomorphic, i.e., f is not one-to-one

globally. Both x1 and x are covered by the two "sheets" of cover.

However, the existence of the two independent solutions is guaranteed

by a nonzero determinant of the Jacobian,

det Jf(x) = x 1 x 2 x 0,

i.e., with x# 3 0 and x 2 0.

From the above two lemmas and example, it is clear that the

finite-covering condition only provides a "weak" sufficient ccndition

for f to be a homeomorphic function, globally.

Even though the global functions have played a fundamental role

in many research works in nonlinear system studies, both the nonzero

Jacobian and the finite covering conditions are not enough to

provide sufficient conditions for f to be one-to-one

correspondence. To discuss this more specifically next further

definitions are made.

V'--2
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h..

Definition

An individual finction fi(x), i=1, 2, ... , n of f is called an

absolutely indevendent function if it consists of only one coordinate

of x, sayx. x j is called an absolutely irdeendent variable.

A nonzero Jacobian condition provides functional independency and

thus at most guarantees the existence of local inverses. But it does

not say hcw many inverses exist, including the possibility of an

infinte number which may appear when f involves trigonometric

functions.

On the other hand,a finite covering condition furnishes a little

narror restriction to f than the nonzero Jacobian condition by

excluding an infinite covering possibility, but still allows multiple

coverings as well as functional dependence. So, we must modify both

conditions as follow. In case f has absolutely independent

functions, f(.) can still hold functional independence even if

det Jf(.) = 0 as far as det Jf-(.) 0 0, where f denotes the remaining

portion of f while deleting one absolutely independent function from

f. The next example shows that f can be functionally independent, and

thus can have a global inverse in spite of det Jf(.) = 0 as far as det

J f -( .) .

if 0.

Example 2-2

Let f:R 3 -> 3 Is defined by

. . . . . . . . . . .. . . . .

.....-.
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3

f x 3. -

x + x +*1 2 3

The function has a global inverse on R as ____

x ( ) 13-/3
X. °.-.°*

1/3x2 =(y 2)1 -

= 3 l1/ 3 _(y 1/3

Hence f is a homeomorphic - onto function unless

2 2det Jf(x) = 9XX2  0

by x =0andx = 0.

Det Jf(x) = 0 is allowed either by x1 =0 or x2  = 0 without

loosing functional independence. Note that both x and x are

absolutely independent variables.

Thus the nonzero-Jacobian condition can be weakened to (n-i)

dimensions instead of n dimensions in the special form of f.

Meanwhile a finite-covering condition must be modified to a one- A
covering condition instead of finite-covering condition. But neither

one is not enough for f to be a globally homeomorphic function since

a nonzero-Jacobian condition alone lacks globallity of the inverse and _

the one-covering condition alone lacks independency of f. . -.

Consequently,we have the following adaptation of the previous

theorem. .
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Theorem 2-3

Let f:x ->Y, xy Rn , ya Rn be an onto C1 function. f is globally

homeomorphic x onto y if

i) detJf(x)$ 0 for all x

(detJf (x)4 0 if f contains absolutely independent functions)

ii) f(x) is a one-covering function for all x.

Proof .

We need to prove that the two conditions mean a global

homeomorphism of f. First, consider for the case when f has no

absolutely independent functions. Then by the inverse function

theorem f is a local homeomorphism from x to y. So, by addition of

restriction U on f, f u(x) is one-to-one from onto y. Next if f

has some absolutely independent function, then detJf (x)4 0 prcvides a

local homeomorphism from x to y. The function f. which is excluded

from f is already independent from f ; thus f. is at least locally

homeomorphism from condition ii). So, f is locally homeomorphic and

again restriction U exists such that f be one-to-one from U to y.

Hence if we can show that U=x, then proof will be completed. Suppose

U is a proper subset of x. Since U is open in x, U is an open proper

subset of x. Let x be a boundary point of Uand V be an open con.ected

neighborhood of f(X ). Since f is a one-covering map on x, f- (V) is

not empty and consists of one component. Let Nx  denote this

component. Surely N contains x . Let N* = Uf-f (V). Since f is

continuous f is open. Hence both N and NZ are open and connected.

-.- -
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Aand * onto V. Since NX  is open andAlso note that f maps both NX a X

contains x, the set Nxn U is also not empty. It follows that Nn N _

is not empty, otherwise there will be at least one point x, in

Nx l U a point J2 in N* such that f(xj) = f(x2 ) s V, a d fu will

not be one-to-one on U which constitutes contradiction. Hence, NX =

N , i.e., x is in N* and, therefore, is in U . This implies U can't

be an open proper subset of x. That is U is closed in ;. So, U is

both open and closed in x and nonempty. Therefore U = x.

Remarz"s

i. Globally homeomorphic from x to y is indentical to global one-to-

one correspondence and continuity [30".

2. Every homeomorphic onto function is a covering map, and every

covering map is locally homeomorphic.
3. Even a nonzero-Jacobian condition can be relaxed to n-I

dimensions. Here n dimensions will be assumed in the general

discussion since detJfi 0 always includes detJf-, 0.

Lemma 2-3

If every entry of the Jacobian J of f does not make any sign

change along the real line of x, then f is globally a one-covering

map.

Proof 3f

Entry J.. - i,j = 1, 2 .... n is variation cf
3X~

function f. with respect to j-th direction of x. If f. does not rake

io ,

............................................................... i
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any sign change due to x then f1 is monotone in J-th direction,

i.e., f1  is one-covering function with respect to xj. If everypY
function does not have any sign change in any direction, then f is

a or-coverir function globally. *

In order to be a multiple-covering function in any direction, the

slope of a corresponding entry must be changed due to that direction.

Then the number of possible covers are one plus the number of sign

changes. The nonzero-Jacobian condition may be combined to constitute

one method to determine one-to-one crrpondence of f. See Theorem

2-4 below.

Lemma 2-4

If the Jacobian J of f(x) is either positive or negative

definite for all x, then f(x) is a global one-covering map.

Proof

Proof for the part of the positive definite case is given in

[19]. Negative definite case can be proven similarily.

In Lemma 2-4, the nonzero-Jacobian condition is already implied

hence not required here. A modified version of the global inverse

function theorem allows us to adopt the global implicit function

theorem as follows;

Theorem 2-4

Consider f:x x u ->y, xe1n,uERr, yERn  such that

U- -



28

f(X, u) Y.

Suppose f is C function in x and u. If f satisfies the

following two conditions,

i) det Jf(.)34 0 for all x. p

ii) f (x,u) is a one-covering map on all x, then there exists a unique

continuous function g such that :

x =g(y,u). (2-27)

Proof

Define a vector x and vector-valued function f as

xH x

=[f(xu)]

(u1 (2-28)

nerwhich maps R onto itself. Obsviously is continuously

differentiable with respect to x and its Jacobian matrix is
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Sf f

- .- ",

3x 3 U

~f 3f
2 2

x U
3 f

3x u

0 1r  , (2-29)

where I is an identity matrix with dimension r. Since- x 0,

r 3 x
3f A

det (--) 0 fron (2-29). And since f= f(x,u) is a one-covering
3 x

map on x, and f = u is also a one-covering map on u, fx) is a one-
2

covering map on x [xJ. Therefore by the Theorem 2-3, there exists a

A1

globally continuous function g = such that

g(y) =x, (2-30)

i ,e . 0

x x] g(y)

= f g(y,u)
g1(y,u)J (2-31)

.-. , _ ,

:-.. .-:. 5 . '. . .i i - 7 . -. .. .- '.. -.. . ...-. ..--..-.. .'.'.. .'.. . .... . .....- '.. . ... .-.. ..-.. .... . ... ....-.. .,. , -_
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for all y

Take the first n equations from (2-31).

X=-g(y,u), (2-32)

which is also a globally continuous function mapping from Rn,+r into

,. .- .

Rn. *- °*

As shown a nonzo-ro-Jacobian. determinant guarantees the existence

of a local horeomorphic inverse, i.e., provides the "connectedness" of

every component of x to Y,the measurement space. But the connection

may not be necessarily unique. For this reason nonzero-Jacobian L
condition will be called "connectedness condition" in the

observability problem which will be discussed in the next section.

A one-covering condition, on the other hand, provides the

uniqueness of the connection globally. So, the one-covering contiion

will be called the "univalence condition" in the observability

problem. Heuristiclly, Theorem 2-4 says that the mapping (2-26) is a

one-to-one correspondence globally if every xi, i =1, 2, .. ,n can

be expressed uniquely in terms of only Y and u for all x.

With this background about the nonlinear functions, observabil1i ty

of nonlinear systems is studied next.

2-3. Observability of Nonlinear systems

State and observation equations are given, again, as

x(t) f(x(t),u(t),t), (2-33)

. . 2. . .

. . * *
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y(t) = h(x(t),t). (2-34)

As assumed earlier f (.) satisfies necessary conditions to

guarantee the existence and uniqueness of the solution x(t). Further

it is assumed that h(.) is differentiable up to (n-1)-th order with

respect to t. Then, define system observability as follows.

Definition

System (2-33), (2-34) is observable at t if knowledge of the

input u(t) and the output y(t), t [to t is sufficient to determine .-

X(to) uniquely for finite t1. If every state x(t) ERn is observable

on the time interval [t, t, then the system is

completely observable.

Note here that due to the assumption of the existence and

uniqueness of the solution in (2-33), x(t) can be uniquely determined

from proper construction of the integral operator g(.) as in (2-3)

x(t) = g(x(t ), u(t),t), (2-3)

00once x(to) iS ~nown. ?!)~,

So, the definition of the x(t )-observability above implies,

also, x(t)-observability for the considered time interval tF [t It1J.

Next, to derive more definitions on the system, differentiates

(2-34) with respect to t and makes appropriate substitution (2-33)

(with suppression t in the variables)

............................ ............. ...................... ..i:!)
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y =h(.-, t)

y'== )h~ + D 3 ht hx

h h(X,u, t)

Th1 ah 3 x h 3
+ =h +h f +h u

a t ax at 3U at lx u

=h (X'Uuu't)2

(n-h hf h t+ h fl) (n 2 )

1 h(-2t ( n-2)U f.+. (n2) ul,.,h (2-35)(-3

(-2)

where y denotes i-th time derivatives of y(t).

Define an mn-dimensional vector Y, measurement vector of the system

(2-33), (2-34) as the left hand side of (2-35), i.e.,

= ~ .. (n-f1 T ,(-36)

and an mn-dimensional function H(.), measurement function of (2-35)

as

LH(.) [h,h 1h 2. . . .  _h11T. (2-37)

Then one obtains an mn-functional relation in vector form

Y =H(x,v,t) ,(2-38)

wh.ere v(t) is a function u i, i=1,2,. . .,n-2.



From equation (2-38) next can be proved.

Theorem 2-5

If every state x(to) is uniquely determined from (2-38), then the

system (2-33), (2-34) is observable at t
0 -

Proof

The proof will be completed if one can show that the unique

determination of every state x(t ) from (2-38) is equivalent to that
0

every state is uniquely determined from the measurement y(t), t-

[t ,t0

Let us expand the function y(t) in a Taylor series for anyt-
ft ,t3

ot It at to

2y(t) = Y(to)+Y(to)(t-t0 )+O.5y"(t0 )(t-t 0 ) 2+,...,+

1 (n-i) n-i
- y (t )(t-t ) + r(t) (2-39)

(n-i)! 0 0

Since the Taylor-series expansion of an arbitrary function is unique,

each coefficient y (to), i 1, 2, .... n-1 is also unique. So,
once y(t) is determined, then y(i)(to) is determined uniquely.

However, each coefficient of (2-39) is an exact element of the

0measurement vector Y in (2-38). Therefore, if x(to) is uniquely -L

solveable in terms of Y, v and t in (2-38), then the system is

observable at t by the definition.
0

Thus, the observability problem of the system is equivalent to

find the condition under which (2-38) has a unique inverse about state

• . ..

" p I ,I* .~lilt t'11
I

'11"
I

"I .* -' i I' I 
I
". l~ll'" . . . . .".. . . . . . . . . ."".. . . . . . . . . . . . . . . . . . . ..-. . . .... . . . . ." . i

-
.Iii"I . I I I" ' II I
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x(t). Or geometrically, the system is observable if the mapping (2-

38) is one-to-one from the state space x se into or onto the

measurement space YcR n for all te [toIt1 ]. (See Figure 1.)

X H Y

X1r

0 xoMn )e ... .. • "'. . "

state space measurement space

Figure 1, Geometric interpretation of~ system

observability

So, from the functional analysis results of the previous section

and Theorem 2-5, the. system -is observable if the following two

conditions are satisfied.

1. Connectedness
ve• state xi,

Every state 1i = , 2, ... n must be connected to any " .,,*,.'

elements of measurement space Y, i.e., (2-38) constitutes n

--,,.':'-.8 - "" '-'.' .- ' . - ... . . . . .. . . -,. .-. . " ... . - . ., . . . . . . . " '
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independent function with respect to x in time interval tF_(to

2. Univalence

Further, every state x i , i = 1, 2, .... n must be connected

uniquely to the measurement space Y.

As mentioned earlier, the first condition is related to the

functional independency and thus nonzero Jacobian condition of (2-38)

and the second condition is related to the one-covering condition.

Before applying Theorem 2-4 it is required to rearrange (2-38) to

reduce computational complexity as follows. This procedure helps to

maximize the functional independence before applying the non-zero

Jacobian condition by deleting functionally dependent elements from

the mn functional H.

L

y = h(x,t), (2-40)

y'= h (x,u,t). (2-41)

By appropriate replacment of hi(.) by h(.) one can obtain

y'= hm (y,x,u,t). (2-42)

Repeating this procedure up to (n-1)th order gives

y= h2a(y,y',x,u,u',t),

.11

(n-1) h yy, ,(n- 2), (n-2),-3
y n-n = hn,a, ... , x,uu',...,u ,t) (2-43)

Denote Y the set consisting of
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y (y, y,,, . . (n-2) (2-44)

andu(n-2)

V = (u,u',u" ..... ) (2-45)

Then the vector notation of (2-42), (2-43) becomes

Y H a(Y -x,V.t) (2-46)

Successive replacement of lower order derivatives to the higher order

derivatives as in(2-43) means minimizing functional dependence between

the individual functional elements h, hi .... hn- since the procedure

is exactly the same as the successive elimination of unkamown variables

in solving (2-38) for x. Thus maximum independence between functional

elements is obtained. Next let

-" p =(y- V,t) "-,'p=

then (2-46) becomes

Y = Ha(x,p). (2-47)

with (2-47) and Theorem 2-4 deternination of the system observability

can be made using the following result.

Main Result

System (2-33), 2-34) is observable (in the strict sense) if (2-

47) satisfies the following two conditions for all t c[t ,t. -

P01

.. .. . .. .• .
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i) Connectednes8 condition

det Jl( 0 (2-48)
a

where JH=-0 and 0 is any subset of H, consisting of n functions.
a axa a

ii) Univalence condition

For thechosen , every state x,, i = 1, 2, ... , n can be .,.

uniquely expressed in terms of only Y and p.

The assertation is obvious from the Theorem 2-4 and 2-5. Actual

proof is similar to the proof of the Theorem 2-4.

Depending on the satisfaction of the conditions i) and/or ii) of

the result, define and categorize system observability as follows:

1. Observable in the strict sense.

Both of the two conditions are satisfied for at least one

combination of out of mn function H,. ":-.;

2. Observable in the wide sense.

Only the connectedness condition is satisfied for any one or more

states, i.e, multiple covering appears in any component of x for any

time t.

3. Unobservable

One ore more components of x cannot be expressed in terms of Y

and P. In this case these states are unconnected to Y and thus the

system is unobservable.

,_o--'- -o- . . - c.- - .. .. :K .... >: -, -> o,% §. . *.%. . .0 $ 3:.... .. . .X < >K
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The above observability determination is demnstrated by the

following examples.

Examle 2-3

A falling body in the constant gravity field with position

variable x1 and velocity x 2 can be expressed as

: --X2'2-:_.
X1 X2 1

X= -g, g is constant.

If one measures position x1 , then

y = and

So, both states are uniquely determined from Y = (Y, y)T, d hence

the system is observable. On the other hand if velocity x2 is

measured, then

y x 2 ,

Only x 2 is connected uniquely to Y. x I is disconnected and

unobservable; hence the system is unobervable. Classic rank test can

be used to verify this.

~. *. *.•*,

* . . . . . *. : . K . * .. .~ . ~ .
.. .-v K°
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x, x + u

2x x-X 2 +3x +2u

x3  x3 , ~j

y =2x +X3

then

Y=4 2x +7x +2u,
y 4 1- 2 3

y ~2 X3 = Y

Only x 2 ' x3  can be obtained uniquely if x, is given, i.e., x, is

unobservable. Decoupling procedures show that xis unobservable.

Example 2-5

A gyrocompass precessional motion is descrived as [ 171~

x =ax-i-bx ,a>O, b=a(1-p ),O< p<11 2 3
* 3x=-cx -dx 1 ,

2 1

2~ 3
y-= -acy - ady -bF(x 2+X3 ) (2-51)

det J =bF(b-a) 0. (2-52)
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From (2-49) (2-51)

xl=y ,.g

x - (ac+ady +F "+.")
F(b-a)

x3= bFv'+a(acy+ady +y ' )
bF(b-a)

Clearly, all the states are observable from the last three equations.

So, the system is observable.

Example 2-6 [91,[13)

x--=2x 3 ,

x2=-x x 3 ,

x=0.
3.

y=X, then (2-53)

S(2-54)

2 2 (-5
=-X1 x 3 = -yx 3 . (2-55).

1 3.

2
So, det J = 2x x 3  0 implies that the initial state of the form

(xlO- 0,x 3 0 9 0) satisfies the connectedness condition. But from (2-

53) to (2-55),

x 1 =yf

X2 = ±y' y
y'.

x=
3-

-Y

.........................................................-
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x and x have multiple expressions or two covers. So, the univalence

condition is not satisfied. The system is only observable in the wide ..

sense if (xO 0 , x3 0 #0 ).

Example 2-7 [121

x--Xo ,...-
X2= 2PlS2XX ' " -- ""

* 3
=-2x -3x x X3 1

x3=_'34 '  - .

x=0.4

y=x 1 . (2-56)

So,

y'--x2, (2-57)

3 3
y =-2xl-3x2-xX3 = -2y-3y-y x (2-58)

1 2 ,, 3 3 P ( - 9

y11'=-2y'-3y-3y 2 yx3 +y3  (2-59)

det J = x -X X 0 implies the connectedness is satisfied

- 1 3

when {x 10  3 0, x30 @ 0 J. Here, note that (2-56), (2-57) are

absolutely independent functions. So, det J=O is allowed as far as

det J # 0, where J is the Jacobian after deleting any one of the

two absolutely independent functions. In this case only

X20= y'(t = 0.

is allowed since x 0= 0 makes det J 0..

.. . . . . . . . . .. . . . .
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From (2-56) (2-59)

x1 =y,

x2 =yI

x3=- (2y+3y'+y")

x4=-(2y'+3y"+y'') + 3y'

2y+3y'+y' y

Obviously, the univalence condition is satisfied. So, the system is

observable if (x1o 9 0, x # O} is preserved.

Two practically more important examples are shown in the next

section which will be used also for stochastic system observability.

2-4 BOT and array SONAR tracking examples

System observability determination of two important examples in

underwater tracking are demonstrated here. The first example is a

bearing-only-target tracking problem where only bearing information of

the target is extracted from the measurement device and used to

determine the observability of the other state variables as well as

whole system observability.

Consider an object or target (T) and observer or ownship (0)

configuration as in Figure 2. When T and/or 0 move with velocity

components Vx , Vy , Vo , Vo , relative coordinates x(t) and y(t)

can be generated as

~~~~~~~~~~~~~~~~. .........................-. .. "... . ........ i... . .......' . .'. . .- . . . . ."...... ..-.. -'.
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Figure 2, BOT configuration
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X(t) = XTr(t)-xO(t)f (2-60)

y(t) =YT(t)-yo(t). (2-61)

Define the state variables in mixed coordinates which consists of

mixed components of polar and rectangular coordinate as

x M= ~t),(2-62)

x (t)=r~t),(2-63)

x Mt= vT (t)-vO(t) V (t), (2-64)

x4(t)= v~y(t)-v~y(t) =vy(t). 2-5

where a(t) is bearing of T from 0 with respect to some reference,

North N here, and r(t) is range. Then from the relations

x(t) =r(t)sin B(t), (2-66) W'

y(t) =r(t)cos a(t), (2-67)

and their derivatives with proper algebra, the state equation in this

I coordinate system becomes

x cosx1 x xsinx1

x 2

x ~ x = xsinx, + x cosx,

ax
a , (2-68)

where a (t), a (t) are accelerations in their directi~ons. Due to

bearing measurement the observation equation is
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y(t) 1 1 0 0 O]x(t) .(-9

To make the system simpler, it is assumed that a (t) =0, a (t) a(t)x y

0 in (2-68), i.e., maneuvering exists only in x-direction. Then

successive replacements yield

y = (2-70)

x cos-x siny
= , (2-71)

x2

=-(a.siny+2y'cosy.x +2y'siny.x3)(-2

x 2

2 2
3ay' cosy+[3y"siny+2 (y) cosy]x +(3y"cosy-2 (y') siny~x +a'sinry

=x 2
(2-73)

So, from (2-70)-(2-73)

=,y, (2-74)

2 -2y'x x4-acosy. siny (2-75)

y"cosy+2(y' )2siny

2

D Cy"siny-.2(y') cosyjx 4 -ay siny ,(-6

y"cosy+2(y' )2siny
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a[4(y')3 2 2

cosysiny+6y'y"cos y-3y'y"-y cosysiny]+asiny[y"cosy+2y') siny]
x =

2y'y"'-3(y")2+4(y')4
(2-77)

From (2-77) it is clear that x4 is connected to the measurment vector

Y and it is unique when a(t) and/or a'(t) are nonzero, i.e.,

maneuvering exists. This implies from (2-75) and (2-76) that x and

x3 are also uniquely connected to Y. So, the system satifies the

connectedness condition if T and/or 0 maneuver. But when a(t) = 0,

a'(t) = 0, i.e., when non-maneuvering, (2-77) says that 4 is not

connected to Y and is unobservable. This causes again from (2-75) and

(2-76) that x2 , x3 are disconnected from Y, and thus these states are

unobservable from Y. Only x1 is observable , in this case,which is

itself a measurement variable. After lengthy computation, the

determinant of the Jacobian becomes

2 2
-2a'y'siny+3a[2(y') cosy+y"siny]-[12y'y"siny(l+cos y)+

detJ- 4
x2

3 3 28cos y(y') ]x3+4y'cosysiny[2(y') cosy+3y"siny]x4  (2-78)

From (2-78) the system is unobservable with det J = 0 for the

following cases:

1. Infinite range, x2 = ,

2. Non-maneuvering, x3  =x 0 with a(t) = a'(t) = 0

(Including parallel stationary movement and tail

chasing.),

. . . . .--

. . . . . . . . . . . . . . . .. . . . . . .
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3. Zero heading rate and acceleration, 0'(t) = "(t) 0,

4. Constant range with special heading such that

6 a( 8'
tan 8 = (2-79) __.

2a' ' -3a 0'

As well as certain others, the system is unobservable due to the lack

of rank when any one or more conditions of above are satisfied.

Consequently, from (2-74)-(2-78), it is shown again that for BOT

tracking, the system is observable only when maneeuvering exists.

The second applicational example is the underwater SONAR tracking

problem where the number of sensors, deployment and measurement

schemes are changed. For good system observability, the number of

sensors and their configuration are very important. Further, with the

same number of sensors and the same deployment structures, measurement

policy is even more important for many cases. One can measure

absolute wave-propagation time-delay between the target and sensor or

time delay difference between the two sensors, Doppler or Doppler

difference or any combination thereof. Each of these measurement

policies requires different observability analysis. Deployment can be

considered as either horizontal (towed linear array) or vertical to

the surface (vertically planted array). Figure 3 shows sensor and

target configuration for up to three sensors which are deployed

vertically. Only directly propagated wave is considered here. In the

one-sensor case, only absolute time delay or absolute Doppler shift

between T and S2 can be measured. It implies that synchronization of

.'*- ,< .. ,." ..-. ..,.'2°'2, 
-.;.-.2 v -. . . •.

. - ...- .. .- ..--.. ..-...--, .-,, ..-. • -. ..-.. ,,. , . . .. . .. .. . ....- ..-. •.-- .-.
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Figure 3,Sensor configuration
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T and S2  is required for the passive case or can be used for only

active SONAR case.

In two-sensor measurement, either absolute quantities or

comparative differencies of intersensor delay and/or Doppler can be

measured.

Here it is assumed that three measurement policies occur . i.-,

1. One relative delay; 2SlD

2. One relative Doppler.; 2SIP

3. One relative delay and Doppler; 2SlD1P

In the three-sensor deployment, several possible measurements are

considered as follows:

1. Two relative delay; 3S2D

2. Three relative delay; 3S3D

3. Two relative delay and one Doppler; 3S2D1P

Of course, more than three sensors can be considered. But it is

known that [68] for optimal range and bearing estimation in senseof a

minimum uncertainty ellipse, the best array configuration of M sensors

is three groups of M/3 sensors each with equal spacing between groups.

In this case, all sensors in a "pod" are assumed to be in the same

location, i.e., there is no delay between sensors in the same group.

Equally spaced M sensors showed much inferior performance than the

three clusters of M/3 sensors except M - . So, the number of sensors

considered here are limited up to three.

.. .

. . . . . .. . . . . . . . . . . . ...-
. . . . . . . . .:i-ii ii i.::;,::'i i-:i..i~ . :. i - - F -:::• - " • . i . :::i :: -:-i-il y . .. il - .- i " - 'i:-- " '- : '
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In a two-dimensional coordinate system, at least four states are

required to describe the motion of the point target - two for positin

and two for velocity in each direction, respectively. Since sound

speed varies quite significantly with depth, salinity, temperature -

specially in coastal inlets [643, (69], (70] it affects the time delay

and the Doppler shift. So, it is considered as a state variable,

also.

I.e., define the state variables as followe:

x is target position in x-direction,

x is target velocity in x-direction, __
i g i n e

x3 is target position in y-direction, -.

x is target velocity in y-direction,

x is C1 (accoustic iive speed in R

X is C2 (accoustic wave speed in R2).

With the above state the system equations can be written as

(under the assumption of constant wave speed in depth) -

0 1 0 0 0 0
0 0 0 0 0 0

x(t)= 0 0 1 0 0 0 x(t). (2-80)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The basic measured quantities are time delay difference t..

between sensors i and j, and Doppler frequency shift difference fij

from carrier frequency fc = 3500 Hz, which seems widely used in

. . *. .

~~~~~~~~~~~~~~~. . . . . .............. ... .......... "-''.-. -.. 2 ii ;' " i.-' .....2 " . b--
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practical SONAR systems. So, for example, if two delay and one

Doppler shift is measured with three sensors (3S2D1P), the observation

equation becomes

Y(t) 12=

{f12 (t)

C 2(t) C I(t)

R~t R M)
f (C2(t) 1(t

R 2(t) R3(t) L

= 2 2 1/2 - 2 2 1/2
(X 1 +X3  (x 1+(x 3-z2))

(' 6x +5

1 2 x3x4) -f,(x~x 2 - (x,-z2)x4)

X(2~ +2 1/2 X X2 + - 2 1/2
x6( 1  x3  c5(x1  ( 3  z2 )

(2 +X21/2 _

x6  C6 3

=h(x(t), f, C3 ) (2-81)

where surface sound speed C 3 s assumed to be a 1 iown value.

3.
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The other cases of measurement equations have a similar form

except measuring different quantities. Therefore, in all cases, the

system equations are simple linear equations if nonlinear drag, etc.,

are neglected. But the observation equations are nonlinear.

To oberve deterministic observability for this system, categorize

the measurement scheme into three groups for convenience as

1. An absolute delay; iSiD

2. Pure relative delay; 2SiD, 3S2D, 3S3D

3. Relative Doppler; 2S1P, 2S1D1P, 3S2DIP

The first case for an absolute time propagation delay of the

acoustic wave with one-sensor deployment gives the observation

equation as

R2 (t)
y(t) - (2-82)

C2 (t)

Considering system equation (2-80) and the relation (with

omission of time variable t)

2 2 1/2
R2 (x1 + x3)

R xx + xx

2 1 2 3x4

R 2  (2-83)

Then, by algebraic manipulation

................................. ....

.. ....-.. ....... •...•. . . •. . . . . -..... •... .•. . . %
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(xy 3  (2-84)

+xx
_ x1 x2 + ~x (2-85)

x6R2

2 2 2
_ x2  +x . i .(2-86)

x 6R 2y

Let

(y,)2

y

)2B=2(y' -yy"

then,

y 2

2

(2 +x4 )
_( 4) 2 2 x4) A'' (2-88)

R 2 y

(x + 2
5)2= x4 28)

Y( (yB' M3y') -A"l'(
2 Y2

From (2-84)-(2-89), it is clear even before solving them for x thatx

does not appear in any equation, explicitly. So,* x5 is not connected

..................................-... . .
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to the measurement vector Y, ,-

Y (y, y, ...... (5)

Obviously x5  is unobservable, and makes the system unobservable

deterministically. Actual solution of these equations shows that

other variables have multiple solutions, i .e., they are connected to Y

multiply, thus they are observable at least in a wide sense.

In the second case when pure relative delay is measured as in

2SID, for example, then

R12 R 1

C2 C 1

1x x3  1 (3 ,22-0

6 51

yo= 1 2 + X3x4 1 Xl2 +(3 2 2)4 (2-91) ':'i?

Continuation up to (n-1)th order derivatives shows that the results

are almost identical to the first case except x5  appears in the5t

expressions. It implies immediately that all the states are

observable at least in a wide sense. When adding more measurements by

addition of more sensors like 3S2D or 3S3D, the system becomes more

.'° °,

". ".' , .. " ... ,..-". ;. . .o."-. -.. . ". . .. " '• -.. . .. % *".** -'* ... -*-**.* "%2.,% -',' -.-.... .".".-"-.o•_-_..-,.•_, - '.'....'.. .. . , -. . ,,, . - '. - '-', '....'.'-,'..--%*,','. %"-.""."-.""..-. v . -" ,."-.'..",v -.. " "--'.-'.-''-".'..*
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observable due to increasing the possibility of uniqueness of the

solution in terms of state x.

In the last case when the measurement equations include Doppler

shift as in 2S1P, 2S1D1P or 3S2D1P shows very interesting results.

For example when observing one Doppler shift in a two-sensor

deployment (2S1P)

Y f 12'

R R
-f 2

C2  C1 '

xx+x Xxf x2 3x4 xx2 + (x 3  Z 2 )x 4

x6R2 x5

y 
(2-92)

where y is the time differentiation of the delay (2-91).

Continuation gives

= f c'

y L

y (5)" f (6)
-fyc (2-93) L

Doppler measurement is just scaling up of one step higher delay

differentiation with scaling factor fc" However, as discussed earlier
Ir

• " ." "

... .'....-... . . . . . . . . . . ::: :
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the 2S1D system itself is already observable (at least in a wide

sense). So, this system is also observable in the same context. The L

same argument can be applied for the 2S1DlP or 3S2D1P measurement

cases, also. Thus the Doppler measurement system is observable

deterministically as far as a delay measurement system is observable.

Of course, a scaling factor influences the magnitude of the

information obtained from the measurement. The effect of this will be

discussed in Chapter Four where information structures of the %arious

measurement schemes are analyzed.

. .- ..

. . . . . . . . . . .-.--.
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CHAPTER 3: INFORMATION-THEORETIC OBSERVABILITY

OF STOCHASTIC SYSTEMS

3-1. Introduction to information theory

Involvement of the noises in the stochastic system description

observability condition to apply in the stochastic system case. A "-

"yes" or "no" type answer to the observability quest.ion has little ']

meaning in this case. Attempts on this problem must be interpreted in

a probabilistic sense.

Contrary to the former results [34]-[39] where Fisher information

is mainly used to study the stochastic observability, here Shannon

information is utilized instead. Specifically, mutual information is

computed and used as a criterion to determine the degree of

observability of any states or whole system.

Information theory has two general orientations: one developed

by Wiener and another by Shannon. Although both Wiener and Shannon

shared a common probabilistic basis, there is sane distinction between

them. The significance of Wiener's work is that, if a signal is

corrupted by some noises, then it is attempted to recover the signal

fran the corrupted one. It is for this purpose that Wiener orignated

optimum filtering theory. However, Shannon's work goes to the next

step. He showed that the signal can be transferred optimally provided

it is properly formed. That is, the signal to be transferred can be

processed before and after sending to counter the disturbance and to

* .. . . . . . . . .. . . . . . . . . . . . . . . .,.. . . . . . .

*.i ~* * . ** -*** .**>~:~:--:-.-°-***°-
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be recovered properly at the destination. For this purpose, Shannon

developed the theories of information measure, channel capacity,

coding processors, and so on.

p To define the information measure, consider the simple

information channel Figure 4 and assume that x. is an input event and

y_ is a corresponding output event, i = 1, 2, .... n, j = 1, 2, ... ,m.

Now define a measure of the amount of information provided by the

output (or measurement) yj about the input x.. It is not difficult to

expect that the transmission of xi through the noisy channel causes a

change in the probablility of x, from an a priori p(x.) to an a

posteriori p(x lyj ). In measuring this change, take the logarithmic

ratio of the two probabilities. It turns out to be appropriate for

the definition of information measure which is suggested first by

Hartley [40]. I.e., the amount of information provided by yj about x.

can be defined as [40], [41].

noise source

Y=Cy.}
-0 informnati on channel

Figure 4J, Input-output block diagram for
information channel

........ ....... ........ ....... ..- .-.. ......- V..
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Y- l og2  ,bits

log 10 hartleys,

p(x. ly.)
in r ats

(3-1) is defined by Shannon and used as a measure of mut.:al

infor-mation between event x. and y4. If p(x.l IY.) I

I(x., y.) xil

-in (1/p(x.)) =-JInp(x.) (2--2)

(3-2) is called self infonrmationi. If (3-2) is true for all i, then

the channel is noiseless. Averaged amount of inform'ation which is

represented by H(x)

n

i1x Z a(.I~.

n
E P( px)lnp(x.i), (3-3)

has been, traditionally, called "information entropy,"' or just

"entropy" of x. In statistical thermodynamics H Is a measure .3f

"disorder" or "uncertainty." Boltzmann showed [42] that In an

isolated thermodynamic system H could never decrease, i.e. ,the system

tends to its maximum disorder. To decrease the entropy, crne must add



inIformation to it either by transferring entrop y out of the syste.

boundary or by making observation (measurement). H1-ere we are L

interested in the latter method.I.e., to decrease the uncertainty of

the general stochastic system, measuremrent will be made and observe

the decreased amount of uncertainty, and thus will use this quantity

as a test criterion of the observabil.ity of the system.For Pan n random

vector x with continuous probability densit-y p(m) with ratura-I

logarithm base, H(x) becom~es

H~(x) =fp(x)n- dx

f -p I p~~np (x) dx

-E[lnp(x)] ,(3-4)

where E is expectation operator.

Another quantity of information content which is co.-7nonly used i

the Fisher inforration. For the same x and der-sity p(-x), Fisher

* information is defined as [43]-(47] and [66].

3 n (x)
JTX) f (x) T dxI

31np(x) 31np(x) T
= ,p (x)() d-x,

1 3p(;,) ap(x)T
fx x

bpX Y 3x
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Algebraic identity

lnp(a) I ?. (a'

a p(a) a

was used in the last equality of (3-5). More compactly (3-5) becomes

2l1np(x)
J(x) =-E[,T

a X 3x

31np(x) 31np(x) T
E[( H (3-6)ax 3x

From the two definitions (3-4) and (3-5) above, it is clear that the

Fisher information J is a nxn matrix quantity and that the Shannon

information H is a scalar valued quanitity. The general relation

between these two information concepts will be discussed briefly

later. However, immediate comparison of (3-4), (3-5) shows that a

simple relation can be derived if a specific density p(x) is given for

any random variable x. For example, a scalar random variable X with '

2Gaussian density having zero mean and variance a has a Fisher

information

a21np(x)

J(x) =-E 2 2 3-7)
ax a

Meanwhile its entropy is

H(X) = -E(lnp(X)] = 1/21n(2Tr 2) (3-8)
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So, from (3-7), (3-8) one can get the relation

dH(x)
2 1/2J(x) (3-9)

d 
2 

(a-

Generalization of this relation can be found in £43] and [44].

Appendix B shows that the maximu= entropy density funciton varies

depending on the constraints which are added to the density p(x).

The Gaussian density his maxlnm entropy iunder the given "nean and

variance condition when X ranges from - to + 00

It is known that [48, and from private comnunication with R.W.

Hamming, Naval Postgraduate School, March 1985] entropy of commonly

used random variables H(x) and its variance have one-to-one relatic-

2H(x) = 1/2 In(A&), (3-10)

if the density and expectation of X exist. So , for example, the

inverse-Gaussian or Cauchy density does not have the relation (3-10'-

due to nonexistence of mean and variance expressions. Constant A is

determined once density is knmown. A = 2ne for Gaussian case, for

example, from (3-8).

Table I shows this relationship for some cormonly used densities

£48].

• -° .

....................... ... ... .... .... ...



* 64

Table 1. Entropy-variance relationship :-

Distribution Pdf p(X) Ccnst. A

Gaussian exp(- x2) 27 e(17.079456)

Uniform 1/a; -a/2<x < a/2 12.

2Triangular a + a x; -1/a <a < 0 6e (~16.30968)

-ax 2
Exponential ae X > 0 e (-7.389046)

Double Exponential 1/ 2 ae 2e (-14.778092)

2 11+2
x x e - "-331',2)

Rayleigh -- exp( -2) (15.331182)
a a 4 -7r --

n+l n-ax 2
a xe (n!) n

Poission ; x > 0 exp[2+2n(p+l- Zl,/i)]
n! ;n > 1 n + 1=,

(15.98307 for n = 10)

Euler Const. = lim (I + 1/2 + 1/3 +... + 1/n - ln(n))

=0.577215664

3-2. The concept of mutual information.

Calculation of the amount of the information about one random

function contained in another random function, so called mutual

information, has many important applications. In communication this

concept is used to detect or decode a trarsmitted signal from a noise
7
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contaminated received signal [41], [49], [502. The extended

application of the mutual information to a more general system to

identify unknown parameters is tried by Weidemann and Stear [51].

Later with the help of measure theory, its utilization is widened into

the area of filtering of general stochastic systems [45], [46], [52]-

[54]. Here an attempt is made further to apply the same concept in

the observability problem. The main feature of this approach lies in

the trarsition of the definition of the term "information" from Fisher

to Shannon, i.e., the meaning of info.-maticn here is understood in the

sense of Shannon.

Define two random vectors x and y as

X= (, }:2. x n:

and assume a joint density p(x,y), and marginal densities p(x) and

p(y) are defined as usual. Then the entropy of x, H(x) is defined as

by (3-4). Entropy of y, H(y) is defined similarly

H(y) = -E[Inp(y)].

In the same context conditional entropy H(xly) can be defined as

in [41], [51]-[54], i.e., for a given conditional density p(xly)

* and chosen specific value y = y then

" H(xly) = -xP(xly)lnp(xly)dx. (3-11)

. ~ ~~~ . .

-I
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From the average over all2 possible y

H(xl-y)= -fy~p(y)H(xly)dy,

=-f,'Y(y)p(xfq)lnp(xly)dxy,

f , fyp (xy)np (x y) dxdy,

-E[lnp(xly)]. (3-12)

N'ext, define joint entropy H(x,y) in a similar way as

H(x,y) = - fx,yp(xiy)lnp(x,y)cdlY,

= -E[JInp(x,y)]. (3-13)

With the above definitions, mutual information between x and y is

derived.1-

U~pon the definition of (3-1), the average mutual informtion of x

for specific y = y is termed as conditional mutual information [413

I (x,Y) which is expressed as

I(x,W) =fxp(xIY)I(xY)dx,

p(xjg)
=fxp(xly)ln -dx. (3-14)

p(x)

I(x,y) is the measure of information gain which is provided by the

measurement y =Y. So, averaging of (3-14) for all possible values of

y yields the formal definition of the mutal information ir(x,y) [1

£45], [51]-[541 as
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I~xy) =P(xty)
I (, f X~p(xuy)n dxdy,

P(YIx)
= Y~xy.n - xy (3-15)

Using the entropy definitions (3-4), (3-12), (3-13) 1I(x, y) becomes

I(x,y) = H(x) - H(xly),

= H(y) - H(ylx),

=H(x) + H(y) - H(x,y). (3.16)

(3-16) can be diagrammed as in Figure 5.

li(i) H(y)

H(x,y)

Figure 5,Entropy and mutual information
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I.e., mutual Information is the comon portion of the information H(x)

and H(y). So, it is clear from (3-15) that if x and y are

independent, i.e,,

p(xly) =p(x),

then, I(x,y) is always zero due to ln(1) = 0 and no common portion in

Figure 5.

1. Properties of I(xY)

Mutual information has the followiing important properties;

)I(x, y) I I(y'x) > 0

This inequality is called the "Shannon inequality." Mutual

information is always greater than zero except the case where x, y are

stochastically independent.

." 2) IiX, y) I (ix, L (y))-.".

Sane information is lost by the transformation L, where L(y) is any

mapping which depends on the domain of y. Equality holds if and only

if the mapping is one-to-one and onto. Loss of information depends on

the relation

H(y) = H(x) + E[lnIJI],

where y = f(x), J = Jacobian of f(x)

3) I(x,y) > I(z, y), (3-17)

where z = f(x,N), N is a randcm function or variable. Information

.. ........ "
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loss is incurred, also, due to the random term in the transformation.

• .4) The information about x increases monoton_ .;ally as more

observation is taken, i.e.,

Ix ' . ..Xk; Y1' . .. . ) < (x1. . .. . ; Y1' . . . M+' ...)-X .
(3-18) p....-.

For our own purpose here, the first equality of (3-16) and the

property 4) above play the most important role. (3-16) is used to

compute mutual information between x and y by considering H>x) as

an uncertainty of the system state x before an observation is made and

H(xly) as the uncertainty of x after an obsservation is made. Thus

I(x,y) is interpreted here as the uncertainty decrease or,

equivalently, information increase due to the observation. Since this

K. ... uncertainty difference is entirely caused by the observation y, the

mutual information I(x,y) can be used as the measure of the

observability of the system. The increased amount of information due

to the observation, then can be evaluated using the inequality (3-18).

I.e., the difference

i. 1'x .. .. kx ; y1 . .. YM' YM+1) -T .. .... . ; Yi . .... . ---

is the information change or information rate which is caused by the

(M+)-th observation data. In communication theory the maximum mutual

information over the p(x) is defined as channel capacity C,

C = max(I(x,y)). (3-19)
p(x)

F-:Li
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Example 3-1

Consider a simple scalar system where observation Y is the sum of

the random variable % and observation noise n

Y =x + n. (3-20)

Let x be a zero mean Guassian random variable with density

21
p(X) e - ep(-) (3-21)

S is the power in the signal .Suppose another random variable n is

2independent of y and is Gaussian with zero mean, variance a Then

pyI X) P (Y -hn

22

1 2YX
P~) ~exp{- 2 (3-24)

V2 )ra 2(an n

Sc, fo al ,tecniinletoyi

2I

.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. n

Since the ouput.is.a.sumof.the.two.Gussian.signas it.is.als
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H(y) =,'21n[2Te(S4c ] (--25)

Thus, from (3-22), (3-25) and the definition (3-16)

I(x,y) = H(y) - H(yIX) .

S S
= 1/21n(I +-2) = 1/21n(I +-), (3-26)

N

where N is the noise power. Note in (3-26) that as ncise powr

becomes small, mutual information increases due to H(yjX) decreasing.

So, the output y approximates the input X more exactly. Oppositely,

if N-i , i.e., the input is totally "masked" by the noise, then

I(x,y) approaches zero. Then x and y look like independent sign.-als.

No information about x is tranferred to y. All of the information is

lost during the transmission. It is clear that I(x,y) increases with

increasing signal to noise ratio (SNR). Since, the correlation

coefficient r, in this case is

I2
02 'S+N

r2 = =...

I(x,y) can be obtained in terms of r from (3-26),

.-\ . ,

I -. -.* ,.

::::-:
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S-.

S

S N

=-1/21n(I r2) (3-27)

I(x~y) is a function of only r and ranges from zero to infinite value

Ias rI ranges from zero to one.k

3-3. Mutual information of stochastic systems.

Figure 6 shows the schematic configuration of the typical

stod'.astic system. Comparison of Figure 4 and 6 shows that the

measo-nement mechanism h(.) can be identified as an information channel

vwre transferring of information occurs.

measurement
noise

Vt

system noise

wt

Figure 6, Typical stochastic systems
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However, generalization of Shannon's result (3-15) or (3-16) to

the continuous random process needs more assumptions on the measu-e .

theoretic point of view. This is discussed next.

First, consider that the observation of the process xt which is

expressed in terms of the Ito. stochastic differential equation

(with the suppression of deterministic control u(t))

dxt = f(xt,t)dt + G(xt,t)dwt, xt0 =x (3-28)
to 0

is made through another stochastic equation

dyt = h(xt,t)dt + dvt, (3-29)

ta n  ts m -" " '

where x, , yjS ; f(.) and h(.) are n, m dimensional vector valued

functions, respectively. w t and vt are independent Wiener processes

with covariances Q(t), R(t) independent of xto. G is an appropriate .

dimensional matrix. Assume (3-28), (3-29) satisfy the existence and

uniqueness conditions of the solution in the mean-square sense [34],

[36]. Let (Q,F,Vi ) be a measure space. Let Y C[O,T] and Fy be the

family of Borel sets of Y and Fy be non-decreasing sub-c-algebras of

Fy  generated by (y 0 < s < t}. The measure induced by yt on the

space (Y, Ft) is denoted by y and the Wiener measure induced by vt
t

on (Y, F) is denoted by " Let X be the vector space and-

be the family of Borel sets of X. Ft is also a nondecreasing sub--'
t

-algebras of Fx . Then the measure induced joint measure of the

joint process (xt , y ) is defined on the space (X x Y, x F )
t ~t

Further assume that



f h(x ,s) Th(x ,s)ds < a.s. (3-30)
s S

0

- -Then Gel'fand and Yaglon [55], Liptser and Shiryayev [561, Duncan [451]

proved that the absolute continuity

P < y (3-31)

P Xy < PxX Pv(3-32)

holds. Further it is kniown that [46], [56] equivalence relation uf

the measures

liy - .v

11 Xy -lix X Pi lix Xl1iv

holds, also. If once absolute contl.inuity condition holds, then by the

Randon-Nikodyn theorem [28], [31], [57] there exists a finite rea.'

valued unique F-measurable funoiton 4on Q such that for every AEF,

e.g., in (3-31)

li( A) f wd(),(3-33) -y fA 1w~l,(

or in a differential form

dliv

With the same reason for the (3-32)

(2W) (W) (3-35)

x v
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The function, known as a likelihood ratic, plays a key role in the

derivation of mutual information. From the Cameron-Martin translation

theorem [45], [46], [58] for the system (3-28) and (3-29), likelihood

ratio becomes

d4 t t
1( = exp~fhF(x5 s) R dy5  1/2 f F(x s s7ff (R s s)ds},

(3-36)

= t -1 T -1dxY (x,y) exp(fh(x s)R dys 1/2 h(x ,s) R h(x s)ds)
0 s

d. x dpv

PL (3-37)

where h(x ,s) = E[h(xss)j F]. If all the measures considered are

probability quantitites P P' P and Pxy respectively. Then the

Radon-Nikodym derivatives I and 2 become density ratios

dP dP- y -¢2 x y , .

- dP dPdP-

So, by letting p be

_ = 2 ' '

dP dP
XY• v

dPxdP dP

dP

dP dP (3-38)
x y

. .
-. .. .- .": :/ .. :-. .-.. ..: . . : - ..-: . ...... ... ...- ,.. . . . . . . . . . . . . . . . . . . . . . .... . . . . . .-.. . " .. . ".•... :-'. :: ::-.:
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Then, from the definition of mutual information. in Sharnon sense)

I(xt t)=f(xt, yt)In4 (xt, yt) dPxdP (3-39)

Since, P XY(xt,yt) =Pxiy(xtlYt)Py(yt)

dP l' (x t dy t d yt

-dP (x )P yt) (-0

dP~ (x t~

So, inserting (3-40) into (3-39) yeilds

I(xt~t Inx Lx2d (xt )dP (yt (3-41)

If probability density is used instead of distribution with the

notations

dP (x <Zx) dP (y <y) dP (xtxiy)

PX (x) Yt txj t'pt (yd I
X t dc xt d y p C

(3-41) becomes

p (xy)

=~ ~ (x~x ly~~_

~x(xt

- ~ ~ ~ p . . . .. . . . . .
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= E in ly(Xt'tPx(Xt) "

H(xt) - H(x tlY ) (3-42)

Therefore, to compute mutual information for the system (3-28), (3-29)

one is, again, required to know either two densities - uncondditiona.l

and conditional - or two entropies. Next is a brief discussion on the

solution of these density equations and approximation methods of these

densities using appropriate moments.

1. P(Xt) and two-moment approximation

Consider the sytem equation (3-28) again

dxt = f(xttt)dt + g(xt,t)dwt , Xo =x (3-43)to 0

Due to the unknown initial state x and the additive noise wt , the

process (xt} can only be described by the statistical treatment. As

is known [36], [57] the probability density evolution of p(xt) obeys

the Kolmogorov forward equation

p n 3(pfi) n 32<pGQG
-= _ + 1/2 (3-44)

9 t i=1aX i'j qax

where all the arguments in the expression are omitted for brevity.

But unfortunately the above partial differential equation can be

* .*W.. .-. .:.. ..1.-..:< .
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solved cnly for a few sprecial simple case. So, in many; practica.

problems one relies on an alternative approximation approach such as

state estimation; e.g.,one obtains proper approximated moments of the

density instead of the density itself. Particularly the first two

moments are important in entropy computational purpose even though

they do not completely characterize density p(xt). It is known that

[36] the first two moments mean x, and covariance Pt propagate

according to

xt = f(xt, Ptit) (3-45)

Pt E[f(xt't)xt E[f(xt't)]xt + E[xtf (xtt)].

A fT(x T
xtE[ tit)] + E[G(xt,t)Q(t)G (xt t)], (3-46)

where xt = E~xtIx, s< t]. By neglecting third and higher-order

moments in the evaluation of (3-45) and (3-46), one obtains the

following approximated version for xt and P

A A*

" ^ ~Pt ^"-:"

xt = (xtt) +- f(xt, t), (3-47)+Gt)QtT tt

STA TA

• __f ^ T^ Pt xt't)Pt + Ptfx(Xt' t) + G(xt,t)Q(t)GT(xt,t) ..-

^T T .
+ PtGx(Xt,t)Q(t)G (xtt) + PtG(xt,t)Q(t)G (xt,t), (3-48)

where f(. and G(. are first partial derivatives and f (.), G 0 (.

are second partial derivatives at xt. Further if the second partials

of (3-47), (3-48) are negligible compared to the first partials andL" t '.2 ,

'4 "- -".



- - - - -. .. - 4 w V A' W1 W" - w - - -- .. . . . . . . . .. . . ....

79

.G() is not a function of xt, then

Xt = f(xt t), (3-49)

= T G~)~)Tt),.v

t= fx(Xtlt)Pt + Ptf (xt't) + G(t)Q(t)G t (3-50)

which is a commonly used approximation. Of course, there are many

other algorithms which can be practically useful

2. p(xtlyt) and extended linear filter

Conditional density p(xtlyt) of the system (3-28), (3-29)

satisfies the nonlinear stochastic partial differential equation,

commonly known as the Kus'-ner equation [34], [36]

ap n a (pf.) n 2
- Z -- + 1/2 E - (pGQGT) + {h(xt,t) - Eh(xt,t))TR-l(t)t i= 1 3 x i=1 x ax

(dyt - Eh(xt,t)dt)p. (3-51)

Due to the additional measurement-related third term in (3-51) it may

be more complicated to solve than (3-44). To obtain the conditiorzi.

moments of the pdf P(xtlyt) of (3-51) let

= E[(xt)IF 1,

then any conditional moment satisfies the stochastic differential

equation

AT T ~.T-1A
dp (xt) = (E[. f]+1/2 tr[E(GQG )]Idt+{Eh ] -4 h) R (dy -hdt),

(3-52)

p[ii
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where h =E[h(xt t)IFYt) and tp P are the first and second partial

derivatives of 'Prelative to xt, respectively. By letting *1(xe X

Tand i(x) =x obtains the mean and covariance as
t Xtt

A A T
dx = f(x ,t)dt+(E~x h (xt,t)J

t t t

V. o

dtt (E( x*T]+~~x T,.'G.v--:[x )']-'t
ar th fis an seon pata t2

AT T T-\'

lt =(ECxtt)t +E(fth(xt.-t)]-..:

dPt = {l(-xfT+lx-xT}+IE[GQGT]-E[ (xt--xt)hT]R- (t) :~[2

E[h(x t_x t) T)at+E[ (xt-xt)(xt-xt)T(h-Eh) ]R- (t)(dyt-Ehdt), (3-54)

Since, Pt is a function of the higher-order moments it can not be a

finite-dimensional filter in general. So, various approximatios and

assumptions are made to ensure that (3-53), (3-54) to be finite

dimensional and practically-implementable filter algorithms. If,

again, G(.) is a function of only t, and the first-order expansion of

f(.) and h(.) is made, then (3-53), (3-54) reduce to the well Iciown

extended Kalman filter

= f(xtt)dt + PthR (t)[dyt-h(x tt)dtj, (3-55)

T Q(t)GT(t)_P T-1P f (x fX't)P P+Ptfx(Xtt+~)1 t Xt (3-56) - -

where f = af
x

Saxt Ixt
t t

.. • ,*..,

-' *-. -.. . . - *p
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The Kalman-Bucy filter is obtained, of course, if the system and

measurement equations are linear. Depending on the order of the

expansion of f(.) and h(.), second or even higher-order filters can be

derived. .

Notice here that the utilization of any approximated moment

expressions of the density instead of the density itself incurs the

conceptional change of the mutual information from I(xt Yt) to

(X, t) where xt=EExtJF;t. In the next section, the second-order

moment approximation of the density functions p(xt) and p(xtlYt) will

be discussed in the computation of the mutual information I t yt) .,

Before this, the relationship between the Shannon and Fisher

information will be summarized for the stochastic system instead of

the random variable case. The following are the vector version of the

results of Liptser and Shiryayev [56].

3. Relationship between Shannon and Fisher Information.

Consider the general nonlinear stochastic system as in (3-28),

(3-29). Nonlinear functional dependence of f(.) and G(.) in terms of

xt  makes the derivation of any relationship between the two 4

information concepts very difficult. This difficulty can be avoided

if a specific form of nonlinear system is assumed, for example, linear . -

dynamics-nonlinear observation system. In this case,system is given as

dxt = f(t)xtdt + g(t)dwt ,  (3-57)

dyt = h(xtyt,t)dt + dvt. (3-58) -

. , ,
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Note that h(.) can, also be a function of the observation y itself

under the bounded strong solution condition for t and th'e .

-~ nonanticipativeness for y. Assume further that h(.) satisfies

TT
J [h (xt,yt,t)h(xt,yt,t)]dt<- , (3-59) --

t
0

for each t, t <t<T, and two densities p(xt and p(xtly.j are twice
0-t

continuously differentiable with respect to x.~

Then Fisher and Shannon information has the following relaticn

T
I~t )= x~ -/ t~~~ (s)[EJ(x51y )-J(x )]ds, (3-60)

t
0

where 1I (xt#Yt) is Shannon information quantity due to the observation

equation (3-58) only, i.e., the case where statistical uncertainty of

the process (x t is not considered, and J(xt,yt) J(xt) are Fisher

information quantities corresponding to the densities p(xtlyt) and

p(xt) respectively. I (xV, can be expressed according to [45],
t 0 t

[46], [56].

I (x y)12r fE([h(x y hx,y s[,xys)-h(x ))s
o t t)=12tr tos s 5,y ,s [xys-hxys)ds

(3-61)

* where

. . .* .* . . . . .
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The proof of the relation (3-60) can be found in the cited

reference.

3.4 Observability using mutual information

As mentioned before the mutual information I(xtYt) is the

information contents (in Shannon's sense) about the state xt which is

contained in the observation yt, i.e., the camnon information of the

two processes xt and yt' So, once it is computed then it represents

the "tightness" of the connection of the state xt to the observation

Yt" Hence, it might be sued as a criterion to determine the degree of

the observability of the given stochastic system. The term

"observability" here is, of course, used in a different meaning fra

the deterministic case and even different with the traditionally used

stochastic case where the Fisher information is commonly used.

As the Fisher information matrix and the observability matrix is

practically used together in a traditional observability

determination, Shannon' s mutual information and the term

"observability" will be used together henceforth.

But due to the difficulty in solving the exact density

equations, Kolmogorov forward equation and Kushner equations,

approximated manent expressions are utilized, alternatively.

Before this, former results on stochastic system observability

are summarized next.

.'. . . . .. . . . . . . . . . . . . .

': ., . . .. . . . -, -.- ... . -. . ... . .... . .. ... C. . .* ., .* . , . .. , . . .-: -
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1.Former results on stochastic system observability.

Consider, again, a general form of stochastic system (3-28), (3-

29)

dx f(xtot)dt + G(xt,t)dwt, (3-62)

dyt =h(Y Ct)dt + dvt (3-63)

The traditional approach in the determination of the observability of

the system (in a Fisher sense) is as follows: using the likelilhocd

function A with A = p(xtlyt) for the noiseless system (Q(t) = 0) in

(3-28), (3-29), it's logarithm quantity ln (A) is maximized according- -

to the definition of the Fisher information . --

3 2ln( LA)
T (3-64) L

3x X
tt .

Then, the Fisher information matrix J(tt for the first-order
0

approximation of the system about the estimation is obtained as
t

[34]-[36], (38), t46], [47]

1' -1T T -1J(t,t)= (t0,t)P (t ,t) + f ( (s, t)H R H (D(s,t)d s

j (t,t) + J0(t,t0) (3-65)

where ) is transition matrix for the linearized portion of f(.) at

* . e.,
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- t =s) Ft)$It,s), 'It t) = I, (3-66)

F (t ) 3 f t =x t

3Xt  X = Xt ,  " "h ~ ~H(t) =A

3x ~ x t

and J. is due to the initial information P 1 and J is due to the
2 0 0

observed information, respectively. Or after some algebraic

manipulation recursive version of (3-65) is obtained as

dJ(.)
-T T -1

-FT(t)J(.)-J(.)F(t) H T (t)R (t)H(t). (3-67)
dt

Traditionally J(.) is called an observability matrix (some authors

[34], (36] call it an information matrix.). Then positive

definiteness or nonsingularity of Jo(.) is used as a criterion of the
0

determination of the observability for the system. Or, for some

positive constants a,8 , s, and unit matrix I, the relation

0 < aI < J (t,t-s) <8 1, (3-68)

is checked for all t > t +s [36].
However, the Fisher information matrix J is related to the"-L-

estimation error covariance matrix Pt by [47]

:) b 3)b . --.

t  > (I + - - -) -(I + ..b -)T. (3-69)
3xt 3 x+.

I, i- i-.',* '-.* . . .. .:- -.. .1 ! .: . * 2 c- .1°. .. .3.- .... . -. . .. . - -. . - " . .< . •.' ''. ."i ."- .-- - -" .- -" "- "i ':: '
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with b(t) being a bias of xt with respect to x t . If x t is an unbiased

estimator, then

Pt (1  (3-70)

Further, if x is optimal, then the equality in (3-70) holds. I.e.,

the covariance of the individual state estimation error is lowerbounded by the diagna elements of J- which Is, so called, Cramer-

Rao lower bound. -""

As well as the positive definiteness of the observability matrix,

eigenvalu of this matrix are, sometimes, utilized to test the system L

observability [37]. Appearance of any zero eigenvalue(s) means

singular Jo and causes system unobservability. High stiffness between

the eigenvalues means weakly observable. Condition number q of L

e

s

where e and s are maximum and minimum eigenvalues, respectively,

is used as an indicator of the system observability.

Somewhat different approach is studied by Sunahara [59]. A

stochastic system (3-62), (3-63) is said to be observable if there

exists an estimator such that the associated error converges to a

sufficiently small value on the time interval [t o , tl] in some

stochastic sense, i.e., for the preassigned error constants 6 and E

0 <E< :if

A 2
P(IIxtj -xtzI2I> 6) < , (3-71 4

.:::':::
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is satisfied, then the system is said to be stochastically observable.

Here x t is obtained by the pre-assigned filter form

dt = f(Att)dt+PtHT (t)[dyt-h(xt't)dt], (3-72)

for the appropriate dimensional matrices Pt and H(t).

Even though the Fisher-Information approach is most widely used

in the observability determination of the given stochastic system,

several disadvantages can be indicated when compared with the

Shannon's mutual-information approach.

1) Even though the theoretical definition of the Fisher

information (3-64) can accamodate system noise wt , the

practically used form (3-65) does not accaiidate wt as far as

the likelihood function which is chosen as the conditional

density p(xtlYt). Neglect of the system noise may cause

incorrect results when wt is significant compared to the other

noises [39]. A convenient form to handle both system and

observation noises is not yet available. However, the mutual

information conveniently considers both noises simultaneously

since it always requires both densities p(xtlyt) and p(xt)

together from its definition.

2) If the system is unobservable or marginally observable, then

singularity or almost singularity of the observability matrix

makes it very difficult to compute this matrix, practically.

But this problem does not occur in the mutual information

computation as can be seen in the next subsection.

...................... ."
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3) Extending linear results to the general nonlinear case

requires many approximations. In the nonlinear case ,a

general form of transition matrix does not exist. I(xtyt)

requires many approximations to be practically implementable,

but here one can use many well-developed nonlinear filters

which are already publicaly available.

4) Even with the above problems in the Fisher information

approach, simplicity in the calculation and recursive nature

make it popular in the linear or linearized, negligible system

noise applications.

2. Observability coputation using mutual information.

From the discussion of the previous section, computation of

observability in terms of mutual information may be found conveniently - . -

by an approximated filter algorithm in many cases. Fran (3-42),

I(xt,yt) computation requires two entropies - marginal entropy H(x t)

and conditional entropy H(xtlyt), Both entropies can be computed from L
the relations

H(xt) = n/2 lnA + 1/2 ln(detr'), (3-73)

H(xtlyt) = n/2 lnA + 1/2 ln(det PT) ETo = to' (3-74)

where r is the covariance for the marginal density p(xt) and is
the covariance for the conditional density P(xtlyt). Note superscript

T is not a transpose here. No approximation is assumed in both I and
Tt

" t, Therefore, fram insertion of (3-73), (3-74) into (3-42)

...................................
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I(xt,¥y= n/2 lnA + 1/2 ln(det r

- n/2 inA - 1/2 In(det PT

T
detFT

= 1/2 In (--------, (3-75)
det Pt

"T T

where I~x toYto 0 due to r T i.e., initial information is

normalized always to zero.

T T
Since exact covariances t and Pt are, in general, functions of

the higher-order moments, computation of these matrices are also

difficult. If any of the second-order approximation algorithn.r is used

with the resultant covariances F and Pt. then
t t

H(xt) = n/2 inA + 1/2 in(det Ft) (3-76)

H(xtlyt) n/2 InA + 1/2 ln(det Pt), (3-77)

where xt is the estimation of xt obtained from the chosen second order

approximation. In this case, mutual information I(xt,y,) becomes

I(xtlyt) = H(xt) -H(xtlYt),

1 det FA
. -- in (-------), I(Xoyo) = 0. (3-78)

2 det Pt

Equation (3-78) is the final result which will be used as a criterion

of the observability of the stochastic system. According to the third

property of the mutual information (3-17)

-I(x tl t > I(xt/t). (3-79)
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inequality in (3-79) is due to the information loss which is incurre

during the approximat ion procedures. For the observabili ty of the

individual state, say i-th state, the following will be used

I i (x1 yt) 1/2 In (---, i = 1,2, ... , n, (3-80)

where x. is the i-th element of xand r P~ are diagonal elements

tt

part of state estimation. Thus, both are defined only when they are

positive definite. The degree of observability at time t is easi'ly

computed by reading rt, P and simple computation according to (3-78).

From (3-78) it is clear that for I(xt~yt) to be maximum, Pt must

be minimum.If the minimum covariance P of the estimation error is
t

obtained by the unbiased optimum estimator ,then the maimum Fisher

information is obtained, also [47], i.e., Cramer-Rao lower bound is

obtained in this case. So,

* t -P (3-81)
t-t

To observe observability variation due to r1' and P tchanges,

consider the simple linear system

dxt =F(t)xtdt + G(t)dwt, (3-82)

dyt H(t)xtdt + dvt, (3-83)

where w and vt have strength Q(t) and R(t), respectively.

Covariances P and r~ then, satisfy
t t

T T
Ft) r~ + rtF (t) + G(t)Q(t)G (t), rt F (3-84)

t~~ t t 1
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T T T -1
Pt = F(t)Pt + PtF (t) + G(t)Q(t)G(t) - PtH (t)R (t)H(t)Pt't t

Pto =Po =r . (3-85)

Mutual information change in this system arises in two ways. One is

through initial information rto ,  Pto, and another is through

measurement mechanism H( t).

Even assuming the same initial information such that rto P to'

the magnitude of r or Pt plays an important role at the final time.

For example, a large initial covariance make system observability grow

fast at the initial stage since P in (3-85) tends to decrease rapidlyt

to its steady state if the filter wrks properly. The main reason for

this is due to the last term of (3-85). However, rt does not change

rapidly since there is no such term in (3-84). Some guidelines of -

choosing proper initial covariance in simulation can be found in [60] .

But choosing of specific value of Pt is based on the designer's

"degree of confidence" of xto relative to unknown true value xto, in

most cases. If too optimistic (choosing too small Pto by

overconfidence), then information growth may be very slow even in the

case where the system is deterministically observable. So, tuning of

the filter is compromising between two extremes by trial and error

until obtaining desirable performance.

The effect of measured information on observability is seen also

T -1through the last term PtH (t)R (t)H(t)Pt in (3-85). EspeciaIlly

measurement structure matrix H(t) and noise strength R(t) are

important here. So, if this term is negligible due to some reason, for
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example, R(t)->-oand/or H(t)->O, then the changing rate F and P in

(3-84), (3-85) will be almost the same. Thus, mutual information or

obsevability will not gr'ow any more in this case.

A short discussion of the relation between the deterministic

observability condition and the mutual information for the linear

system case is made next.

3. Linear systems: deterministic and stochastic observability.

<4

Mutual inf ormation, or formally, stochastic observability of a

system is approxizmted as the log ratio of the two covariances rt and

Pt So, the relationship between deterministic and stochastic

observability is characterized by the relation between these matrices

and the satisfaction of the deterministic observability condition. To

avoid complexity consider a stochastic linear (time-invariant) system . -*

dxt =Fxtdt + gdwt, (3-86)

dy Hxd + dvt ,(3-87)t.

where wt, vt have covariances Q, R respectively. For this system a

t ttheorem is cited fra [56].

Theorem 3-1

Let the system (3-86), (3-87) satisfy the deterministic

observability condition, i.e., observability matrix

........................................ ..

............. .........o . .•°-°,,•.°.,.o......-.-. ..........
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H
HF

V =
(3-88)

has rank n. Then the covariance matrix Pt of the system is uniformly

bounded and converges to its limit P, where

P' = lim Pt,
t-> CO v '.

o

t
) T

] (3-89) .~-'..- .."-i'

V T
lim E[(xt-t)(xt-xt , (3-89)
t-> 00

is the solution of

T T T-FP. + F +GQG p HR- HP. =0. (3-90)

Uniform boundedness is proved by changing the system dynamic

equation (3-86) into its auxiliary control problem.

Remarks

1) For uniform boundedness and convergence of Pt to P, at least

an unstable state, if exists, must be observable

deterministically [61]. If the system is stable then the

observability rank condition (3-88) can be dropped for

boundedness of Pt-
.,2.



94

2) If matrix pair (F,G) in (3-86) constitutes a controllable

system, i.e., controllability matrix M (when wt is considered

as an input control).

M= (G, FG...... FrG), 

has rank n, then Pt is positive definite [36], [56].

From the previous theorem, the following result can be proved.

In the theorem, covariance matrix manipulation identities are cited

from the results of Balakrishnan [61].

Theorem 3-2

If the time invariant linear system (3-86), 3-87) is

deterministically observable, then it bec-hes stochastically more

observable in the sense that the mutual information I(xt,yt increases

with time.

Proof

By Theorem 3-1 covariance Pt which is the solution of

=FP+PT T T-
Pt = FPt + P FT + GQG -PtHTR-HPt P P (3-91)

converges uniformly to P. if the system is deterministically

observable. Now consider covariance rt where

t = F rt + (39, r = Po (3-92)

We want to show next the relation rt> Pt. Differentiation of (3-92)

gives

iw I"--
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= -(3-93)

and the solution of (3-93) becomes

* *T0o () (3-94)
where f(t)= F4(t), 4(O)= I . (3-95)

Using the same procedures as (3-91) gives 4..

,t=(F PHR 1H)P + (F HTRlH , (3-96)

and it's solution

T
Pt =4'(t)Po t), (3-97)

with

4(t) = (F- PtHTR-1H)*(t), , (0) = I (3-98)

in (3-94) and P in (3-97) are determined by letting t=0 in (3-92)

and (3-91), respectively. Let eigenvalues of F in (3-95) be X1 , x1

n such that

X"n,
1 1 X' .. > f

and eigenvalues of (F-PtHTR-1H) in (3-98) be p p ...... p such

T -1
that p1 > p2 . . . . . . > pn, then, due to the term P H R H in (3-98) the

relation 
.-.

I .

" ~~~~..--"-'.-."°.... .. ...... °. .°. . ........... . ...... .. .. .. .. "

• • •" _ _..' _u '-X.. . . . . . ....... ... . ... .... . ... .... .... ........... . ... ..... .... ......... . ... .. .. . . . .
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holds. Considering (3-94) and (3-97) and both having the am initial

conditions

D(t)= - P > 0. (3-99)
t t

Further the difference D( t) is monotone In time since all the
eigev lues appear as an exponential form in * and TP by the Caley-

Hamilton theorem. So, convergence of Pt to P and mootonicity of

D(t) says that I(xt y) grows monotonically from (3-78). Thus, the

system becomes more observable as tim progresses.

More intuitive relations of the two observability concepts can be

derived when absence of process noise w is assumed. In this case,

using a matrix inversion identity [62] for (3-91)

S T-1 Tto 1 (3-100)

-FP -P F+HR H, P (3100
L

Then, the solution of (3-100) is

pt- iT(to.!)9o10(to,t) + fo (s,t)HTR-11i(s,t)ds
to

= Jt(t,to) + J (t,t). (3-101)
i 0 0 0

- - - 5'. . . .-.... . . . . . .

• • . • • - • ° . . " 5**,, .*° .* .*, , ..-" .. ° . . *.°° , . .° ,° .. , •. - o -. °, % .' °° , .o° • °- °°, . ° - •

".4. S .* ,* .' *,- • - -"- .,% . ,' . % % ., % - "p, .
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Notice, that in (3-101) is exactly the sm as the Fisher

information matrix J Ct,t 0 ) in (3-65). Using the same procedures for

the covariance r in (3-92), yieldst

I ._FTr 1 -F, to1 -1rl P;'
t rt to (302

and It's solution

r-1 *T~tft -1 c ) 313

Assume here that P1- is nonsingular, i e., there is sons prior
0

information about all states. If the system Is deterministically

observable, i.e.,the second term of (3-101) is positive definite, then

comparison of (3-101) and (3-103) considering, again, the definition

of (3-78),shows that I(xt,y ) increases until P~ reaches to its limit.
t

Nowv consider there exists system noise w. Then from (3-92) its

solution is
t~

=T T T
rt (tot) r (t,to) +f*(t,s)G(s)Q(s)G (s)it (t,s)ds,

t
0

= i(tit) + C0(t, to) (3-104)

Notice that the matrix C (t,t) Is termed, traditionally, as a

stochastic controllability matrix. So, from (3-101), (3-78), the

classical concept of stochastic observability and controllability

affect the mutual information as follows: I( .y) is Increased by

both increased quantity of controllability and observability.

Contribution of the stochastic controllability matrix C (t,t ) is mad.e

via increasing r t in (3-104), and thus increasing I(xty t in (3-78).
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Contribution of the increased stochastic observability J (t,t )is via
0 0

Idecreasing P t in (3-101) and thus increases I(xtyt) since P t enters

(3-78) into its denominator.
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CHAPTR 4: INpFRITION STRuCTURAL ANALYSIS OF

BO! AND ARRAY SONAR SYSTMS

siuion reut fthe infomation structural analysis of two,

Chapter 2 to relate with the deterministic observability conditions.

To f it more practical situations in both BOT and array SONAR tracking

examples, it Is assumed that the information acquisition about the

system states is made through the discrete measureent mechanism.

However, the evolution of the system states are assumed to be the

timae-continuous Thus, the estimation of the system states are

Implemented by the discrete-observation, c-ontinuous-state filter

algorithm.

Before presenting this, the followiing simple linear system

results are provided to give a clear understanding of the current

approach.

The term "observability" in this chapter ,of course ,means the

degree of the observability in terms of mutual Information.
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.1Falling-body example.

Initial position Z(0)

position

z~t)=x1 t) (ye =-2= >
IMeasurement Yt=HX( t)

I +vt

Figure 7, Measurements of falling-body

Consider a noise free second-order system representing a falling-

body in a constant gravitational field g (Figure 7).

Z(t) = g. t > 0 (4-1)

lat the position variable x -z, and velocity variable x2 --t. Then

x~=10 1 xt) + ij(4-2)
0 0 1-91

.......................................... . 7
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This system is observed by the noisy measurement device which can beI: expressed by _
¥t = -Xlt) + vt ,  (4-3)

were random white Gaussian noise has covariance R(t). Simple test

shows that the deterministic portion of the system is observable if

one observes position x and unobservable if observes velocity x2 .
1 2

Intuitively this is clear because if one measures xl, then it's

derivative gives velocity x2. No other information is required to
I-*

describe the system. However, when one measures velocity x 2 , then as

integration is required to get position x I . I.e.,

t
x (t) = fX2(t)dt + x(0) , (4-4)1 2

0

but x (0) can not be determined from any measurement data. So, the

system is unobservable in this case.

Using the usual Kalman-Bucy filter with Gaussian noise, mutual

information I(^tyt) is compared in Table 2. In the deterministicallyx• ..t

observable case (by measuring position x I ) mutual information of the

total system (Tin Table 2) grows up to 5.7 from zero at final time 20

sec. Position (p) and velocity (v) grow 4.9 and 1.8 respectively.

But for the unobservable case (by measuring x 2) corresponding

observability grows: T =2.8, P =2.3, v =1.8. To compare the

significance of the logarithm scale a linear scale is also shon. For
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S
the unobservable system, only the observed velocity variable keeps the

same level of observable system (1.8).

The degree of observability directly affects the filtering error.

This is analyzed in Figures 8 and 9. Figure 8 sham the

detenninistically observable case with initial errors of 20 m in

position and 5 m/s in velocity. Since position is measured in this .'."

case, its information is dominant and thus the corresponding error

decreases rapidly. The velocity error Is, also, quite small at the

final time since x2 is also an observable variable. However, Figure 9

is much different than Figure 8 even with the same Initial errors.

Since velocity is observed here, position is an unobservable variable,

and thus carries very large errors up to the final time. The velocity

variable (observed quantity here) sh quite satisfactory performance

compared to the position variable.

Table 3 shows the effect of initial information P (=ro) on the
00

observabllty+ and filtering error. In general, as larger initial

information is assumed (smaller P ) the system obtains saller final

infozation. Note also that in most cases Information acquisition is

quite fast in the initial stage. This phenomnon is more significant

as P Increases. It implies that the filter forgets the initial

uncertainty very quickly when the assumed initial infonmt ion is

small. This is one of the most desirable features of the Kalman-Bucy

filter. Practical experience suggests, however, that in stochastic

nonlinear filter design, with non-negligible nonlinearity, it is

desirable not to use overly pessimistic Initial-error

+Observability again refers to I(Ayt) for all the following data.

... . . . . . .. . - ,
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covariances since a large P could excessively dampen the system

dynamics and filter gain matrix and thus reject some of the valuable

rement data in spite of fast information pick up from the - - -

measurement mechanism[64]. This pheranenon can be found in the -'

position error (e ) when the system is deterministically unobservable

with a high value P0 . An opposite direction, i.e., overly optimistic

P sometimes, makes the response of the filter too slow.

As a summary, system observability is strong with strong position

and velocity observability when the system is deterministically

observable. But it is weak when the system is deterministically

unobservable. Since position is an unobservable state in the latter

case, its poor observability generates large filtering errors during

the observed period.

4-2 BOT system and Information analysis.

It is well known that a BOT system is observable only when

relative maneuvering exists. It is checked, again in Chapter Two.

using so called, mixed-coordinate system (see also [33], [63]). Here

the same problem is used to analyze and compare the observability

content in terus of the information theoretic point of view. For

comparison, two mre popular coordinate systems - rectangular and

modified polar (MP) coordinates- are adopted in this section. System

description of the individual coordinates are presented in Table 4,

with proper dimensional noises. Measurement equations are written in

discrete form for future conveniences. Using the same procedures as
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derived in Chapter Two, deterministic observability for the remaining

tw coordinates can be checked. LoV algebraic manipulation sho"s

also that the system is observable when relative maneuvering exists.

This is not surprising since deterministic observability is not

affected by the coordinate transformation.

Note in Table 4 that the system equation is linear and the

observation equation is nonlinear in rectangular coordinates and vice

versa in the modified-polar and mixed coordinates. The variables r,

v, a, B represent range, velocity, acceleration, bearing,

respectively.

O .

-*-** .-.-.*-.*
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To implement a not-excessively-complicated nonlinear filter of a

continuous-system discrete-observation type,a truncated - secor..d order .
.'.

filter [34], [36] is considered. With the same target and observer -

(or ownship) configuration as in Figure 2, one-directional maneuvering

is assumed as

a (t) = 0

2a y(t) =-0.25 cos (0.005t) m/s2  , (4-5)

and initial states are assumed Gaussian with proper mean.

Other parameters used are

T (Sampling interval) = 10 sec,

At (time update interval between observation) = 1 sec, .

r(O) (initial range) = 8000 m,

vx (target vel. in x-direction) = 10m/s ~ 20 kt , [.

vo. (observer vel. in x-direction) = 15 m/s 30 kt

v 5 sin (0.005t) m/s.

Measurement noise sequence and system noise are assumed to be, also,

Gaussian with variance Rk and Q(t), respectively.

Under the assumption of near symmetric form of density .and

negligible third and higher-order moments, a modified version of the

truncated Gaussian second-order filter is implemented.

Continuous-discrete type filter is, conmmonly, implemented in two .

stages. The first stage, a measurement- update stage, processes

observed data according to the discrete filter. The second stage

. . .. . . . . . ... ..-- - .--



performs the time propagation integral of the first and second moment

(or higher moments if necessary) of the state between the observation

int rval according to the continuous fashion.

This form of filter is particulary suited to us due to the nature

of the underwater SONAR system where the data-acquisition interval is

quite long compared to the data-processirg rate. The actual algorithm

is sunmrarized next [34].

1. Measurement Update

At the sampling instant tk, abbreviated by k, mean and

covariance are computed as

xk+1 xk + Kk[y k  h(kk) b (k)]I (4-6)

Pk+1 = k -KkH(xkk)Pk, (4-7)

where gain Kk is given by

T T -T1'"'
K= P0HIikk) Ak (4-8)

Ak = H(xkk)PkH (xkk) - mm + Rk (4-9.

H(xk,k) =x..h A , h is measurement function,

and where the bias correction term b is an m-vector with i-th

component

b (k) = O.5tr( - -,A , i=1,2,...,m, (4-10)

m is a measurement dimension.

. . .... . . .

. . . . . . . . . . . . . . . . . . . . . .. . .
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2. Time progagation between observations

A

Between observation intervals there is no measurement data,.so::

and P progate time forward according to the continuous filter with the Z-.A.

initial conditions

ti Xk+1' Pti = Pk+"

Time integration of x and P at t, tE tk'tk+!] becomes

AAA

xt  f(xtatt) + b ,4-:I)

p

TATPt = F(xt't)Pt + PtF (xtIt) + GtQ(t)Gt ,(4-

where f(.) is the system function with an extra parameter a a ,d

F(xtt) - j :
X- X- 

.-

Bias correction term b is an n-vector with i-th component
p

Px 3x I Pt A (4-13)
3X=X t .-

and for system noise function Gt(xt)

S Gik G1j

(GtQ(t)Gli)= E [GikQkG....--
k,1=1 3X 3X

3 Gj -2Gik
1/2 G --- Tt + 1/2 tr{ P -- Q Gj , (4-14)

s is a dimension of system noise.
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Thus at t =tk, the initial condition of the first stage

becomes, again

Xk = Xt' Pk = Pt' (4-15)

and the same procedures repeat for new observed data.

3. Unobserved system covariance

Another covariance Ft is required to compute I(ThtY 71s is

evaluated according to equation (4-12). Since no measurement is made

here the measurement update is not necessary. Of course the reference

point should be different with (4-12) except at the initial

conditions.

With assigned parameters and algorithms, simulation is conducted

for three different coordinates. The following are the results found

from the analysis of the simulation for the first 40 minutes.

Tables 5, 6, 7 show the mutual information contents of the three

coordinate systems with various parameter changing-system noise Q(t)

and maneuvering ay. Total system observability is most strong in the
y

modified polar coordinates (Table 6). Rectangular and mxed

coordinates show almost the same levels (Table 5 and 7). Of course,

directly observed variables - bearing(8) in mixed and 111, range (r) in

rectangular - exhibit the strongest observability in all cases.

Inspection of all three tables show that system observability drops

significantly as the maneuvering parameter changes from a ,6 0
y

(maneuvering exists) to a = 0 (non-maneuvering). This can be
y

explained best by the deterministic observability. As seen in Chapter
I!

S *. . . . . . . .. . . . . . . . . .".- . -

* . S S S - S . . . . .
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Two, the sytem is observable determinirtically only when manuevering

exists.

Another notable observability decrease appears when there exists

system noise (Q A 0). This is due to a change of mutual information

quantity fron Io(xt,yt) to I(xtyt) (See Chapter Three for notation).

Notice also that range information is most drastically influenced

by the observer maneuvering (3.8 to 0.2 for mixed, 7.4 to -3.0 for

modified polar, 4.3 to 0.9 (r ) and 5.0 to 1.8 (ry) for rectangularx y

coordinates, respectively). In spite of the strongest total

observbility, contribution by the range observability to the total

observability is the most negligible in the MP case.

Velocity observability remains very poor, generally, in the non-

maneuvering case, or when system noise exists.

The effects of the degree of observability on the range and

velocity estimation error are shown in Figures 10 to 13. Range errors

(Figures 10 to 12) converge toward zero for the maneuvering and

without system noise case (even different convergence rates), but not

for other cases. For all three coordinates, range errors seems to

diverge when a = 0 and Q = 0. At least, they do not converge to
Y

zero in the non-maneuvering case in any sense.

Relative poor observability of the range variable in the MP

system may be the reason why the range error exhibits some oscillatory

property in Figure 11.

-- 1o .*
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A more desirable convergence is shown by the mixed coordinates if

a 6 0, Q 0 (Figure 10). Note that the vertical scale in the MP
y

system is different than the other two coordinates.

Careful comparison of the observability tables and corresponding

estimation error figures shows that they are very closely related,

i.e., the fast information growth interval corresponds to the abrupt

error descreasing interval. Figure 13 shows that velocity errors

converge to zero nicely for both nixed and rectangular coordinates

when ranetuvering exists. This may be due to the strong observability

of these variables. Note that initial velocity error (1 m,/s 2kts,

does not decrease satisfactorily when a = 0 for both coordinates.
y

The velocity variables are not available exclusively for the MP

coordinates.
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Observability analysis in terms of measurement noise R is sham-

in Tables 8, 9 and 10 with cozresponng range error (er). As

expected, observability decreases as the noise level increases.

Particularily observability of the target speed becwns very poor wh n

high noise level is presented."-.

Cornparing the range errors for all coordinates show that mixed . -

coordinates exhibit the smallest errors even with the high noise

level. This may be an extremely important characteristic fra

practical point of view.

Due to the fast information pick-up in the early stage, range

error drops very quickly for the mixed coordinates. For example,

within one minute, e drops around 10% of its initial error and stays
r

within that value in low noise (R=(0.20)2). However, the rectangular

coordinate case takes five minutes and the MP takes more than twenty -

minutes. Even though the system observability is high in the .P

coordinates, range error shows quite unstable behavior. This trend

takes longer as the noise level becomes higher (Table 9). Analysis

sha that the instability is due to the to the instability in Pt.

Table 11 shows the effect of the data sampling interval for the

mixed coordinates. From a standard 10-second interval, it is extended

to 20 seconds or is shortened to 2 seconds. More frequent measurement

(shorter T) makes the system more ovbservable. Specifically,

observability of the speed variable in the maneuvering direction (y-

direction here) improved significantly.

I:::! :

:.. . :: :: :: . : .. : :.:: : .: : :: :::. : . .: . . . :.,.: .::.::
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However, due to data processing speed limitation of the on-board

processor as well as other limitations, ping interval for active SONAR

or randomn process correlation time, for example, one cannot

practically decrease the sampling interval arbitrarily in the underwater

tracingj system.

One more point whtich has not appeared here is the effect of the

magnitude of the umaneuvering. Sensitivity analysis shows that once

maneuvering exists its magnitude does not give any significant

influence to the informat ion content. This also may be a very

valuable find3ing from the ecanmic and tactical standpoint.
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4-3. Infor ation and Sensor number, Measurement

Policy in Array SONAR Tracking

Another application area where system observability is crucially

important in the ocean envirornent is the underwater SONAR tracking

problem. Here, one is interested in determination of the number of

sensors and their deployment configuration such that the system is

deterministically observable as well as stochastically more strongly

observable. One also wants to decide what kind of quantity should be

measured to maximize the collected information with the given

conditions. The last point is more important for our purpose here

since even with the same number of sensors and with the same

deployment structure, measurement of different quantities results with

different degrees of observability.

We have already analyzed the same problem from the

determinisitic point of view in Chapter Two. We observed that the

system is observable except when we measured one absolute time delay

with one sensor (lSlabs.D). The other cases are all observable at

least in a wide sense. See Figure 3 for the sensor-target

configuration. We observed, also, that Doppler measurement increases

the measurement quantity with a factor of fc (carrier frequency)

compared to the delay measurement.

Here the same problem is analyzed stochastically. Seven

measurement policies are chosen as in Chapter Two for the linearily

deployed sensors. The standard extended Kalman filter of the discrete

type is used [36].

.......................
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The other parameters used are as follows: "

measurement sampling interval; T - 15 sec.

initial condition of x (when no initial noise is added)

r (0) 10000 m

v (0) -15.433 m/s ( 30 knots, approaching)x
A(0) = r (0) 4000 m

v(0) 0 m/s
Y
c1 (0) 1500 m/s

c2 (0) 1500 m/s

where xi(0) is assumed N (x.(0), CT) i 1, 6, such that

a = ox  = 100 m,

02 = O = 0.15 m/s

3 = 0, = 40 m,a3 Cy

04 Vy = 0.1 m/s,

05 = =C 5 m/s,

a6 c- ,/s.

The measurement noise assumed is also a Gaussian sequence with

covariance

012 = 0.019 sec

OT23 = 0.026 sec ,

TI3 = 0.016 sec

0abstF 0.359 sec

f12 0.1875 Hz

. -.. ,. .
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and P r° is assumed to be

a2(0) x 104

2
a(0) x 5x102

p (o) x 104
0 y

2(0) x 5x10 2  V

(0) x 1o2

0 )0  X 10o

CC
f =3500 H-- (modulation carrier frequency) ,. '

Z= 2000 m (intersensor distance of s1 and s3),

Z = 200X3 m (intersensor distance of sI, and s2.2

With the above parameter 20 runs are averaged. Table 12 shows

the mutual information content for the whole system for various

measurement schemes. Clearly an increased number of deployed sensors

yields stronger observability. In spite of the largest observation

magnitude (notice that absolute delay is much larger than relative

delay magnitude for far-field observation) lSlabs.D system shows the

weakest observability due to the unobservable state x5 (=c1).

Inspection of the table shows also that the degree of the

observability can be approximately categorized in three groups.

1. 1Slabs.D (Obs. 9.2)

2S1D (10.5)

2SIP (13.4)

. .o. . . . . . . . .

. . . . . . . . . . . . . . . . . .. . .... . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .
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2. 2SlD1P (20.6)

3S2D (19.7)

3S3D (21.2)

3. 3S2D1P (30.8) r

When only delay or Doppler is measured for one or two sensors,

the system still remains in a weakly observable status even when the

system is deterministically observable (the first group).,-

Stronger information is obtained when measuring more than one

quantity, i.e., both delay and Doppler with two sensors (2S1D1P), or

when one more sensor is added to the measurement of only one quantity

(3S21D, 3S3D) (the second group).

Information does not increase, appreciably, with the addition of

the same kind of measu t quantity as can be seen. This may be . .

caused by the fact that the third delay depends entirel an the first

two delays. Only two delays are independent in the three-sensor delay

mesurement.
Stronger and more significant information is obtained when one

observes both delay and Doppler with three sensors (the last case).

It is also of interest that most of the information is collected

during the very early stages of the observation, i.e., when the first

few sets of measuremnt data are processed.

Information content for the individual measurement policies is

shom in Table 13 through 19. In the case of 1Slabs.D (Table 13)

mutual information about c_ is zero due to the unobservability of this

1 
, ° o .. *-

. :

~"..
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variable. Observability of v, v and c Is relatively poor comparedx y 2

to the range variables r and r Ix y

Here one can easily understand the obvious advantage of the

mutual information approach (in Shannon's sense) ompared to the

Fisher information matrix approach. In the current method, the

information content of the deterministically observable individual

state estimate is calculated as well as the total system information

even if some states are unobservable. This is not possible in the L_

Fisher information approach when the information matrix is singular

Compare Table 12 and Table 20 ).

a~ig' *~. *-*..-:~.... - ~-~~iur.*i~i.i mmmmminmimiiiiumii~mimiimm ~m mu mmi ~ .*q-Tt'
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Table 13, Observability •Slabs.,,

t Total r x  vx  r y c1  C2
(Imin) .:

0.25 4.35 3.11 0.00 0.03 0.00 0.0 0.01

0.50 5.03 3.27 0.00 0.03 0.00 0.0 0.01

0.75 5.42 3.32 0.00 0.03 0.00 0.0 0.0-

1.00 5.70 3.33 0.01 0.04 0.00 0.0 0.01

1.25 5.92 3.34 0.01 O.06 0.00 0.0 C. 01

1.50 6.14 3.35 0.02 0.13 0.00 0.0 0.01

1.75 6.48 3.44 0.03 0.36 0.00 0.0 0.01

2.00 6.99 3.65 0.04 0.78 0.01 0.0 0.02

2.25 7.57 3.94 0.04 1.27 0.01 0.0 0.02

2.50 8.12 4.19 0.04 1.73 0.01 0.0 0.03

2.75 8.52 4.33 0.04 2.04 0.01 0.0 0.03 :

3.00 8.64 4.29 0.05 2.10 0.01 0.0 0.03

3.25 8.72 4.26 0.06 2.13 0.02 0.0 0.03

3.50 8.80 4.22 0.08 2.16 0.02 0.0 0.04

3.75 8.87 4.19 0.10 2.19 0.03 0.0 0.04

4.00 8.94 4.15 0.12 2.21 0.04 0.0 0.04

4.25 9.00 4.11 0.13 2.23 0.05 0.0 0.04

4.50 9.06 4.07 0.15 2.26 0.05 0.0 0.05

4.75 9.12 4.03 0.16 2.28 0.06 0.0 0.05

5.00 9.17 3.99 0.16 2.31 0.08 0.0 0.05

- -.-.. . . . . . . . . . .

• ,- .
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Table 14, Observability 2S.D

t Total r v r v c 1  c 2x xy y

0.25 5.67 0.19 0.00 0.34 0.00 0.29 0.33

0.50 6.07 0.23 0.00 0.36 0.01 0.30 0.33

0.75 6.62 0.60 0.00 0.37 0.02 0.35 0.39

1.00 7.58 1.07 0.01 0.39 0.03 0.40 0.47

1.25 7.99 1.26 0.01 0.46 0.04 0.43 0.50

1.50 8.15 1.33 0.01 0.50 0.06 0.44 0.51

1.75 8.34 1.45 0.02 0.52 0.07 0.44 0.51

2.00 8.63 1.54 0.02 0.57 0.09 0.46 0.54

2.25 8.83 1.66 0.03 0.66 0.44 0.47 0.55

2.50 8.95 1.69 0.04 0.72 0.13 0.47 0.55 i Io

2.75 9.11 1.76 0.04 0.81 0.15 0.47 0.55

3.00 9.22 1.82 0.05 0.86 0.17 0.47 0.55

3.25 9.47 1.91 0.07 1.06 0.19 0.48 0.57

3.50 9.66 1.97 0.08 1.20 0.21 0.49 0.57

3.75 9.86 2.06 0.09 1.32 0.24 0.49 0.58

4.00 9.96 2.11 0.11 1.34 0.26 0.49 0.58

4.25 10.05 2.15 0.13 1.36 0.28 0.49 0.58

4.50 10.15 2.16 0.14 1.38 0.29 0.50 0.58

4.75 10.27 2.19 0.16 1.41 0.31 0.49 0.57

5.00 10.48 2.23 0.18 1.50 0.33 0.50 0.58

.. . . .. . ... . . .. . . . .. . . .. . . .. . . .. . .... . ..."•" " " ". " • ". .. .......... ....... .......
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Table 15, Observability 2S1P

t Total r v r v cc 2

0.25 6.65 0.59 0.03 0.15 0.00 0.23 0.20

0.50 7.22 0.84 0.05 00.16 0.00 0.26 0.25

0.75 7.94 1.28 0.11 0.18 0.01 0.39 0.34 S

i.00 8.57 1.67 0.15 0.21 0.01 0.45 0.37

!.5 9.12 1.82 0.20 0.27 0.02 0.49 'D.40

1.50 9.47 1.98 0.24 0.34 0.03 0.50 0.41 .

1.75 9.81 2.13 0.27 0.47 0.03 0.50 0.41

2.00 10.09 2.24 0.31 0.64 0.04 0.53 0.43

2.25 10.32 2.34 0.36 0.81 0.05 0.53 0.43

2.50 10.56 2.46 0.40 0.90 0.05 0.55 0.44

2.75 10.81 2.56 0.44 0.97 0.06 0.56 0.45

3.00 11.25 2.70 0.48 1.18 0.07 0.56 0.46

3.25 11.45 2.79 0.51 1.29 0.07 0.56 0.46

3.50 11.69 2.90 0.54 1.36 0.08 0.56 0.46

3.75 12.12 3.02 0.59 1.48 0.09 0.56 0.46

4.0 1.6 31 .3 .5 01 .6 04

4.00 12.3 3.15 0.63 1.55 0.10 0.56 0.46

4.50 12.89 3.32 0.72 1.70 0.13 0.56 0.46

4.75 13.11 3.39 0.78 1.73 0.14 0.56 0.46

5.00 13.44 3.48 0.84 1.31 0.15 0.56 0.46
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Table 16, Observability 2S1D1P

Total r r v C1  ,
2

0.25 12.31 0.93 0.03 0.55 0.00 0.53 0.65

0.50 13.52 1.19 0.07 0.79 0.02 0.64 0.65

0.75 14.57 1.47 0.21 1.12 0.06 0.65 0.67

L.O0 15.53 1.78 0.32 1.47 0.14 0.66 0.8-.

1.25 16.40 2,0 0.46 1.71 0.25 0.66 0.69

1.50 16.91 2.13 0.52 1.82 1.82 0.36 0.70

1.75 17.34 2.25 0.58 1.88 0.46 0.66 0.71

2.00 17.75 2.37 0.65 1.95 0.53 0.67 0.71

2.25 18.15 2.48 0.73 2.00 0.57 0.67 0.72

2.50 18.41 2.55 0.75 2.00 0.69 0,67 0.72

2.75 18.65 2.62 0.79 1.99 0.62 0.67 0.72

3.00 18.90 2.70 0.82 2.00 0.65 0.67 0.72

3.25 19.20 2.81 0.83 2.07 0.73 0.67 0.73 -"

3.50 19.40 2.90 0.83 2.08 0.77 0.67 0.72

3.75 19.58 2.98 0.84 2.09 9.80 0.66 0.72

4.00 19.70 3.09 0.65 2.12 0.84 0.66 0.72

4.25 19.99 3.20 0.86 2.15 0.89 0.66 0.72

4.50 20.18 3.30 0.87 2.18 0.93 0.66 0.72

4.75 20.39 3.42 0.90 2.22 1.00 0.66 0.72

5.00 20.64 3.53 0.94 2.27 1.09 0.66 0.72

. . . .-

.... ... ... ... .... .-. ... ... ... ... ... .... ... ... ... ... ... ... . - .- ,
. ..... ....... .. .. . .
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Table 17, Observability 3S11D

'-6

t Total r v xr v 1  C2

0.25 12.48 0.21 0.00 1.36 0.00 1.48 0.35

0.50 13.40 0.37 0.00 1.43 0.04 1.50 0.45

0.75 15.37 1.12 0.01 1.74 0.11 1.76 0.97

1.00 16.28 1.64 0.01 2.07 0.18 1.95 1.31

1.25 16.95 1.92 0.02 2.31 0.29 2.15 1.54

1.50 17.34 2.08 0.03 2.46 0.41 2.28 1.86

1.75 17.57 2.18 0.04 2.54 0.52 2.30 1.73

2.00 17.92 2.27 0.05 2.63 0.64 2.34 1.79

2.25 18.04 2.30 0.06 2.66 0.73 2.33 1.79

2.50 18.18 2.32 0.07 2.68 0.82 2.30 1.78

2.75 18.30 2.35 0.08 2.73 0.90 2.26 1.77

3.00 18.43 2.37 0.09 2.77 0.98 2.24 1.76

3.25 18.58 2.42 0.10 2.83 1.06 2.20 1.76

3.50 18.75 8.48 0.12 2.89 1.13 2.17 1.76

3.75 18.96 2.55 0.14 2.96 1.18 2.15 1.77

4.00 19.11 2.60 0.16 3.01 1.24 2.12 1.77

4.25 19.28 2.64 0.18 3.06 1.28 20.6 1.77

4.50 19.43 2.67 0.20 3.09 1.33 2.05 1.77

4.75 19.56 2.71 0.22 3.13 1.37 2.01 1.76

5.00 19.74 2.78 0.24 3.19 1.41 1.98 1.75
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Table 18, Observability 3S3D

t Total r v r v c c2x x y y1 2

0.25 13.10 0.21 0.00 0.36 0.00 1.48 0.35 .1.7

0.50 14.00 0.40 0.00 1.44 0.06 1.51 0.46

0.75 17.02 1.58 0.01 1.97 0.12 1.91 1.28

1.00 17.86 1.96 0.01 2.25 0.20 2.12 1.54

1.25 18.43 2.26 0.03 2.50 0.35 2.30 1.81

1.50 18.79 2.39 0.04 2.65 0.47 2.46 1.92

1.75 18.94 2.42 0.05 2.69 0.58 2.43 1.93

2.00 19.39 2.72 0.06 2.94 0.68 2.47 2.06

2.25 19.60 2.74 0.07 2.97 0.77 2.46 2.05

2.50 19.74 2.75 0.08 3.00 0.87 2.43 2.03

2.75 19.86 2.76 0.09 3.02 0.96 2.39 2.01

3.00 19.99 2.78 0.11 3.06 1.04 2.35 2.00

3.25 20.14 2.80 0.13 3.09 1.12 2.30 1.98

3.50 20.25 2.81 0.14 3.11 1.19 2.26 1.96

3.75 20.43 2.85 0.17 3.15 1.24 2.21 1.95

4.00 20.59 2.90 0.19 3.21 1.29 2.19 1.94

4.25 20.77 3.01 0.21 3.29 1.34 2.16 1.93

4.50 20.93 3.04 0.24 3.32 1.39 2.15 1.93

4.75 21.06 3.06 0.26 3.35 1.43 2.11 1.92

5.00 21.20 3.13 0.29 3.41 1.48 2.10 1.92

-0 .
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Table 19, Observability 3S2DIP

t Total r V c c

0.25 21.74 1.73 0.06 1.46 0.00 1.48 0.84 -.,

0.50 22.86 1.93 0.12 1.64 0.18 1.61 0.94

0.75 23.82 2.13 0.19 1.87 0.39 i.81 1.16

I7
1.00 24.70 2.41 0.25 2.21 0.59 2.05 1.38 -

1.25 25.50 2.63 0.35 2.47 0.77 2.25 1.64

1.50 26.09 2.78 0.44 2.62 0.94 2.35 1.78

1.75 26.58 2.94 0.50 2.77 1.10 2.42 1.84 ".

2.00 27.07 3.08 0.59 2.89 1.23 2.46 1.98

2.25 27.43 3.19 0.67 2.97 1.34 2.46 1.98

2.50 27.84 3.29 0.74 3.06 1.44 2.47 2.00

2.75 28.15 3.39 0.81 3.14 1.54 2.45 2.01

3.00 28.49 3.51 0.85 3.24 1.63 2.45 2.02

3.25 28.81 3.64 0.87 3.36 1.72 2.47 2..

3.50 29.10 3.78 0.83 3.49 1.81 2.49 2.04

3.75 29.38 3.9 0.90 3.60 1.88 2.49 2.06

4.00 29.68 4.05 0.92 3.74 1.95 2.50 2.09

4.25 29.96 4.19 0.95 3.88 2.01 2.51 2.11

4.50 30.22 4.32 0.98 3.98 2.07 2.48 2.12

4.75 30.49 4.46 1.03 4.09 2.13 2.45 2.14

5.00 30.76 4.60 1.10 4.20 2.20 2.42 2.15

..-.-.. . ...... . . .- . ..... .-..--.--.-.--.-.. '- ...--.-.. . .. . ......... ....-.....-........ . . . ...... . . .. "" """ •
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some unobservable states. In this case the total or individual state

information cannot be computed because of this singularity. :ir that

case even identification of unobservable states is not generally

possible. To identify those unobservable states usually intuition,

experience or trial and error are used. All the other six measurement

policies (Tables 14 to 19) show that the system is observable even

though the degree of observability is different. As the number of

sensors increases unobservable or weakly observable states becom.e mtc-.

strongly observable. Specifically, inforation growth for the o0-

speed variables c I and c2 is significant when the three-sensor policy

is used regardless of measured quantity.

Strong system observability for the 3S2D1P case is due to the

strong individual state information for all six states.

The effects of filtering errors due to the different degrees of

information content is seen from Figure 14 through 16 for range r.,

target speed vy, and sound speed c2, respectively.

Roughly, increasing the niunber of measured quantities with more

sensors gives a smaller filtering error because of the stronger

observability. With an initially given 1,000 m range error, combine

the measurement of delay and Doppler yields significantly small

errors. The errors stay within few ten meters in 5 minutes final tlime

for both 2S1D1P and 3S2DIP cases. 3S2DIP case, particularly, shows

very desirable characteristics as can be seen from Figure 14. It is

important to note here that very undesirable properties (in the sense

that large error or oscillation of range error results) appear when.

-..
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measuring only time delay. The same figure, also, shows large (more

than initial error) errors in the case of 2S1D, 3D, c-nd some

overshoot appears for ISID even with reasonably good range

information. Notice that ISID has only limited usage, e.g., target-

sensor synchronization or in case of active SONAR situation.

One now can say that Doppler measurement which is combined with

proper delay measurement is crucial for good range estimation in SONAR-

tracking.

Figure 15 shows target velocity error with an initial 2 n/s ( -4

knots) error. Here one can observe some different aspects as compared

with the range error. I.e., no matter what quantity is measured, the

system exerts less velocity error when more sensors are included with

increased number of measured variables. Figure 15, also, shows that

the magnitude of this error can be divided in three groups,exactly, as

the total system observability is divided. The first group (.S1D,

2S1JD, 2S1P) again shows the poorest performance and the third group

(3S2DIP) is the superior group.

1SID shows some oscillatory properties here, also. Extended

observation beyond five minutes showed that the error in 231D1P case

decreases from around 5 1/2 minutes.

Figure 16 shows the evolution of the sound speed error for .n...

initially given 50 m/s. This value may be slightly larger than the

practical situation.

However, one can easily recognize three distinct groups of error

trends. These three groups exactly coincide with the grcups which are

"[ ,'L:'......: 'i ::: ..- [,. _'.:".".. .".... . ................................. ".".-"..".".".".""..".."."."..
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made in the system observability. I.e., ISiD, 2S1D, 2S1P group shows

the poorest performance and 2SIDIP, 3S2D, 3S3D group shows the medium

range error and, again, 3S2D1P shows the superior performance. ISID

case shows a mild overshoot with the weakest information.

For comparison, a discrete version of the Fisher information

matrix (3-65) is computed for the selected five observation policies.

k -T( TA -1H( -I(k,l) = . i)HT(x(i))R- H(x(i)) i (k,i), (4-16) -

Here, iterative modification of (3-67),

I(k+1,i) - D-T (k+l,k) I(k,l) c7-I (k+l,k) +

TA -1-.-
HT(x(k+1)) R- (k+1) H(x(k+l)), (4-17)

is used instead of (4-16). This is shown at Table 20. Matrix I(k,1)

remains singular over the entire observation period for the iSID

measurement case and remains nonsingular with shown magnitude of

determinant in other cases.

Comparison of this table with the total information contents

(Table 12) will reveal that the two approaches exactly correspond to

each other for the chosen five measured policies.

Superiority of the measurement 3S2D1P system is shown here, also,

Thus one can conclude this section as follows: at least two sensors

are required for the system to be observable. 3S2D1P measurement

gives the most desirable performance in all cases. If only two

sensors are available, a combination of delay and Doppler (2S1D1P)

. .. . .
. . . . . . . . .. . . . . . . . . . . . . . . .
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measurement is strongly recommended. For small range error, Doppler

* measurement Is crucial. For ~saltarget velocity and so=und speed

errors, include as many sensors as possible to make strong system

observabil1ity.

ISID policy is not recommended except in special cases as in the

exerimentally well synchronized case [64] or in an active SONAR

system.
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Table 20,

Observability (singularity of Fisher information

matrix)

meas. is
t asD 2S1DIP 3S2D 3S3D 3S2D1P

(min.)

0.04.x1 21 8.x1 22 321x117
0.5 4.xo 81I -xO 5.3xIc71

1.0

1.5

2.0

2.5 4.0x10-15 2.6xl0'1 2.0x10O1 0 1.1x10-9

3.0

3.5

4.0

4.5

5.0 3.7xl10 9  7.6x10-8  6.3x10-7  1.2x10-5

*4 implies unobservable period
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CHAPTER 5: SUM4ARY AND CONCLUSION

In this dissertation, system observability is studied for both

deterministic and stochastic cases.

Since nonlinear observability for deterministic systems is a

geometric nonlinear functional property, the inverse and implicit

function theorems are useful. By modifying the global implicit-

function theorem, sufficient conditions for the given nonlinear

function to be globally homeomorphic are derived. From an

applicational point of view, the nonzero Jacobian condition, which can

be related to n-I dimensions for the special case, provides the

connectedness condition for every state to be connected to the

measurement space. However, a finite-covering condition must be

tightened to a one-covering condition then by "which univalence of the

connectedness can be guaranteed.

Before these two conditions can be applied to the system"

equations, differentiation of the system observation equations with

respect to t, and substitution of the lower-order derivatives of

observation equations to the higher order up to (n-1)-th derivatives

must be preceded.

Depending on the satisfication of the conditions, observability

in the strict sense, observability in the wide sense, and unobservable

states are determined.

. . . . . S.

"- ° . .° - . °o - .. - ° -. - . , . . . . . . . ° . . . ° . , . . - . S., . . . . . .. . . .. . . ° ' °•
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k kO

151 ,

Application of this method is demonstrated by several examples.

Especially, two practical problems in the ocean environment where the

observability is very important are dealt with here.

Bearing-only-target tracking problem, which is described by, a

so-called, mLxed-coordinate system, is analyzed. The fact that this

system is only observable when relative maneuvering exists and

unobservable when non-maneuvering is proven again, and special cases

of interest are studied. In the linear-arTay SONAR problem, at least

two sensors are necessary for system observability. Doppler

measrement scales up the delay ea-ent quantity by the factor of

modulation carrier frequency.

For stochastic system observability, a new approach is

attempted. Instead of using the classical Fisher information matrix,

mutual information (in the Shannon sense) is computed and utilized as

a criterion for determination of the degree of the observability.

Computed here is the amount of information about one random process ::.

(state xt) contained in another random process (observation y-t).

Since the mutual information is defined as the uncertainty or entropy

difference between the sender and the receiver of the information,

from information theory, it is reqire to know tw entropies H(xt)

and H(xt).

Fortunately, entropy and variance have one-to-me relationship

except in a few special cases. So, mutual information can be computed

from two covariances - a priori and a posteriori statistical

covariances - as far as both are available. Since, in practice,

. .. .... . . . . . . . .. . . .%.. . . ..

-........... . . .. ', . .....-. : : . . .::. .... : . :..7 ... .....: .. .
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higher moments are required in the evaluation of the second moment of

the density approximation must be used to obtain it. Any well-

developed approximated nonlinear filter algorithm can be used. Since,

covariance in this case does not fully characterize the statistics of

the state xt mutual information I (xt,Yt) is used instead of I(xtyt).

The relationship between the deterministic observability rank

condition and the stochastic observability in terms of mutual

information is discussed for the linear system.

Obvious advantages of the mutual information approach over the

Fisher information approach in connection with practical application

aspects are:

1) System observability computation is possible even in the case

that sane states are unobservable. This is not possible in the

Fisher information due to the singularity of the observability

matrix.

2) Identification of unobservable states is immediate by just

indicating the states whose Information do not grow. But this is

very difficult in the Fisher information where they can only be

done by empirical guessing or trial and error [71 .

3) Both mutual information and Fisher information consider both

system and measurement noise effects, theoretically. But the

Fisher information matrix in the applicational form only

acccmmodates measuremnt noise.

4) The Fisher information matrix for the nonlinear system,

traditionally, uses the first-order linearization. But Shannon

o.. . . . . . .°o", °
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information seems more readily calculated according to

higher-order state estimation approximation.

The relationship between the Fisher information and the Shannon

mutual information is discussed for a special form of nonlinear

system.

According to the result of the mutual information derivation, it

is computed and compared for the three practical examples. Simple

linear example, falling body, is followed by the two nonlinear

simulation results which are the same system model used in the

deterministic observability.

In the BOT system, three coordinates; rectangular, modified

polar and mixed coordinate system are compared.

Information structure analysis sh that both range and target L
speed are weakly observable when the observer does not maneuver

relative to the target for all three coordinates. Once meneuvering

exists in any direction its magnitude has not much effect on

observability. It is observed that system dynamic noise reduces

collected information significantly.

Measurement noise and data sampling intervals also have certain

effects on observability. Their effects are analyzed.

Analysis always shows that poor system observability is followed

by large filtering error and vice versa. In spite of no specific

superiority in its state observability, mixed coordinates show the

most desireable performance in all cases.

-. . . . . . . . .. . . . . . . . . . . . . . * .. .-

. . . . . . . . . . . . . .. .* .
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Modified polar coordinates show some unstable characteristics in

spite of its strong observability magnitude.
h'je

At least tw sensors are required for every state to be

observable in the array SONAR tracking problem.

3S2D1P measurement policy is the most recommerdable if up to

three sensor deployment is available.

If only two sensors are available, a combination of delay and

Doppler (2SID1P) measurement is the most reccmuedable policy. For

only small range, Doppler measurement is crucially important. On the

other hand, for small target velocity and sound-speed errors, include

as many sensors as possible to make the system more strongly

observable since those errors are porportional to the whole system

observability.

ISID is not recommendable except for particulary well-

synchronized experimental cases.

As a result, for the deterministic observability problem, twoa

simple and convenient conditions - connectedness and univalence - are

developed.

For stochastic observability, it is found that the mutual

information approach is a valid alternative which seemingly can

determine the degree of observability more completely than the

classical Fisher information matrix.

The effect of the deterministic observability to the stochastic

observability and related topics are analyzed for the BOT and array

SONAR tracking simulation.

7,-, 7, .ee_'
. . . . . . . . . . . . . . . . **. *"t** . . o %-
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APPENDIX A: FUNCTIONS AND FUNCTIONAL DEPENDENCE [24], [31]

Definitions

Consider an n real valued continuous function f: Rn->Rn. 

Function f: X->Y, &Rn, YcRn is one-to-one from X into Y if for every

y FR(f), range of f, there is exactly one NEX such that y=f(x). Then

f has a left-inverse g if and only if f is one-to-one, i.e., there

exists a function g: Y->X such that

gof = g(f(X)) IX , fA-•

where IX is the identity function for X. If every yEY is the image of

at least one xeX, then f is an onto function. In this case f has a

riqht-inverse g such that

fog = f(g(Y)) =I (A-2)
Y'.

If f is one-to-one and onto, then it is said to be an one-to- '

one correspondence. A f is invertible if and only if it is one-to-one

correspondence, and thereby has a left and right inverses which are

equal. A function f is a homeomorphism if it is one-to-one

correspondence and has continuous inverse f-. Further, if f is

continuously differentiable, i.e., C function, then f is called

diffeomorphism. C= diffeomorphism means that the inverse f 1 exists

and is also of class C So, the invertability property of f can be

diagrammed as follows:

. . .. . . ........ . . . . . . . . . . . ,
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161

if 1as unique inverse
yes (f invertible)

ois f onto?

. yes no f has only left inverses

is fl1-i?

f has only right inverses
no yes

is f onto?

no f has no inverse

Functional dependence

dePendent in an open subset G of X if there exists a function from

R n to R such that

(f 1ff2 1... 'f n~. 0 for X.G (A-3)

Now introduce following theorems. Proof can be found in many

standard analysis text, for example [213, [24], [26].

Theorem A-i [261

Let X be a subset of 1Rn. If f: X->Rrl is C1 function in an open

set GCX and the Jacobian J of f is not identically zero for X G, then

,f are functionally independent in G.

Real.. . . . . . . . . . . . . . .. . . . . . . . . . . . . . ...... . . . . . . . ..io~ l y. i['i'
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Remarks

DetJf(x)tO for some x implies [153, [323 that for any interior

point y of R(f) there exists a neighborhood of y where the C1  inverse

f- of f is defined. Further, if f- is unique globally, then f is a

C -diffeomorphism and f maps Rn onto itself as a one-to-one

correspondence. If f- is not unique globally, then the next inverse

function theorem may be used to restrict the domain X on which f is

one-to-one.

Theorem A-2 Inverse Function theorem [261

Let x be an interior point of a set X in Rn and suppose the

function f:X->Y, Yeln satisfies the following:

i) f is a class C.

ii) det Jf(x)+O,

then, there exists an open set U containing x sach that the

restriction of f to U, f is one-to-one. The inverse f-1 is also C1

'U

on the open set V=f(U).

A generalization of the inverse function theorem to the function

of the form f:RnxRr->K, m is not necessarily equal to n, is the

following implicit function theorem.

Theorem A-3 Implicit Function theorem [211 R--<¢..

Let (x,v)T , xeR be an interior point of a set E in Rnx r  and

suppose that the function f: E->Rn satisfies the following conditions

. . . .

• . .,... .... -, . •. . ...- . . ... . .. -...... ... ... .. ............. ,-..-

.. .-- ,,, - ".. . . .. . .~ .. . .... . . . .II. . . . . . . . . . . . . . . . .
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i) f (X ) Y

I T
i) f(.) is C at (x, v)

-. iii) detJf(x,v)to

Then, there exists neighborhood N, R of x, v given by

N [ x-ajx~x+a],

R [v-b~xlv+b],

where a, b are proper real constant vectors, andl a C± function U: R->N

such that

X =g(YV)'

is the only solution lying in NxR of

f(X,V) =Y.
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APPENDIX{ B: DETE1PMINATION OF TE MAXIMUM ERTOPY DENITY1

Determination of the maximum entropy density function is derived

next. This is useful in the computation of upper bound of the the

inf ormation contents which is contained in the arbitrary random

variable or random process.

Consider a scalar random variable x which has density p(x), but

the form of p(x) is not known. Then from (3-4),

H(x) -fp(x)lnp(x)dx. (B-1)
I -0

One wants to find p(x) which maximizes (B-i) under some const.raints.

Since maximum entropy density function p(x) is changed as the range of

x and constraints are changed. Suppose first that;

* - maximize (B-1) with

xeEO,a],

a
fp(x)dx I ,
0

then by the help of the calculus of variations, one can compute

maXimum entropy density p(x) as

*p(x) 1i/a, 0O<x <a

0. , elsewhere (B-3)

i.e., uniform density gives the maximum entropy in this case.
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Butiftherageof x is change to

and constraints are changed to

fp(x)dx 1
0

f fxp(x)dx E[x] m, (B-4)
0

then the result is

1 ::
p(x) =--- exp{--- 0 O< X< OD(B-5)

m m

i e., one-sided exponential density yields the maximum entropy

density.

More generally, if

X F-(-,C)

with the constraints

V. fp(x)dx =1,

fxp(x)dx m,

f (X-m)2p(x)dx., var xa 2 (B-6)
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then one can prove the following important result [42), [49), [673.

Theorem B-

For x (-00, 00) with the constraint (B-6), the maximum entropy

density function p(x) is a Guassian density.

Proof

Problem is to show that the solution p(x) which maximizes -J

max. -fo p (x)lImp (Y) dx}

with the given range and constraints have the form

p(x)-------2- ex~p( 2 -- (B7)
2 7ra 2a

5 The Lagrangian M for this problem is

M =-fp(x)lnp(x)dx + X[IE-fp(x)dx)

CO2 - CO-)
+ [i m -f xp~x)dx] + a [cya xm p(x)dx], -)

where x , are Lagrangian multipliers. Using calculus of

variations with

V. .'*

-a
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4( (d4O/dp)6p,:2

S. = -f lnp(x) + + X + + 8(:-m)2 dx.dp ,B-9)

By setting 6M=O, (B-9) gives

2inp(x) + 1 + X + px + $(x-m) 0, (B-10)

or

p(x) exp(-I - (x-m) (B-11)

Substitution of (B-li) into (B-6) and solving for X , , 8 yields

Guassian density

1 (x-m)2  "'----XM
p(x) = }.- (B-12)

2 -" 2

So, for any distribution of x next relation holds

H (x) HG G(x) ,

1 /2 ln(2 ei ) kB-13) ---

where HG(x) is a Guassian entropy.

Table B-i shows H(x) of commonly used density functions for fixed

variance. Note that the Gaussian density has the largest

entropy.

S- -

4- %* ,

*...............°-
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Table B-1. Entropy of common density functions.

2p

Dist. H(x)

Gaussian 1.4189

Uni form. 1.2425

Triangular 1.3959

Exponential 1.0

Doiable 1.3466F

Rayleigh 1.3649

Poission 1.3879

(n= -10)

- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -
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